IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v587y2020i7832d10.1038_s41586-020-2856-x.html
   My bibliography  Save this article

snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis

Author

Listed:
  • Wenfei Sun

    (Nutrition and Health, ETH Zurich)

  • Hua Dong

    (Nutrition and Health, ETH Zurich)

  • Miroslav Balaz

    (Nutrition and Health, ETH Zurich)

  • Michal Slyper

    (Broad Institute of MIT and Harvard)

  • Eugene Drokhlyansky

    (Broad Institute of MIT and Harvard)

  • Georgia Colleluori

    (Marche Polytechnic University)

  • Antonio Giordano

    (Marche Polytechnic University)

  • Zuzana Kovanicova

    (Biomedical Research Center at the Slovak Academy of Sciences)

  • Patrik Stefanicka

    (Faculty of Medicine and University Hospital, Comenius University)

  • Lucia Balazova

    (Nutrition and Health, ETH Zurich)

  • Lianggong Ding

    (Nutrition and Health, ETH Zurich)

  • Anna Sofie Husted

    (University of Copenhagen)

  • Gottfried Rudofsky

    (Cantonal Hospital Olten)

  • Jozef Ukropec

    (Biomedical Research Center at the Slovak Academy of Sciences)

  • Saverio Cinti

    (Marche Polytechnic University)

  • Thue W. Schwartz

    (University of Copenhagen)

  • Aviv Regev

    (Broad Institute of MIT and Harvard
    Massachusetts Institute of Technology
    Genentech)

  • Christian Wolfrum

    (Nutrition and Health, ETH Zurich)

Abstract

Adipose tissue is usually classified on the basis of its function as white, brown or beige (brite)1. It is an important regulator of systemic metabolism, as shown by the fact that dysfunctional adipose tissue in obesity leads to a variety of secondary metabolic complications2,3. In addition, adipose tissue functions as a signalling hub that regulates systemic metabolism through paracrine and endocrine signals4. Here we use single-nucleus RNA-sequencing (snRNA-seq) analysis in mice and humans to characterize adipocyte heterogeneity. We identify a rare subpopulation of adipocytes in mice that increases in abundance at higher temperatures, and we show that this subpopulation regulates the activity of neighbouring adipocytes through acetate-mediated modulation of their thermogenic capacity. Human adipose tissue contains higher numbers of cells of this subpopulation, which could explain the lower thermogenic activity of human compared to mouse adipose tissue and suggests that targeting this pathway could be used to restore thermogenic activity.

Suggested Citation

  • Wenfei Sun & Hua Dong & Miroslav Balaz & Michal Slyper & Eugene Drokhlyansky & Georgia Colleluori & Antonio Giordano & Zuzana Kovanicova & Patrik Stefanicka & Lucia Balazova & Lianggong Ding & Anna So, 2020. "snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis," Nature, Nature, vol. 587(7832), pages 98-102, November.
  • Handle: RePEc:nat:nature:v:587:y:2020:i:7832:d:10.1038_s41586-020-2856-x
    DOI: 10.1038/s41586-020-2856-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2856-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2856-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucas Massier & Jutta Jalkanen & Merve Elmastas & Jiawei Zhong & Tongtong Wang & Pamela A. Nono Nankam & Scott Frendo-Cumbo & Jesper Bäckdahl & Narmadha Subramanian & Takuya Sekine & Alastair G. Kerr , 2023. "An integrated single cell and spatial transcriptomic map of human white adipose tissue," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Yan-Ting Chen & Qi-Yuan Yang & Yun Hu & Xiang-Dong Liu & Jeanene M. Avila & Mei-Jun Zhu & Peter W. Nathanielsz & Min Du, 2021. "Imprinted lncRNA Dio3os preprograms intergenerational brown fat development and obesity resistance," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Borja Martinez-Tellez & Guillermo Sanchez-Delgado & Francisco M. Acosta & Juan M. A. Alcantara & Francisco J. Amaro-Gahete & Wendy D. Martinez-Avila & Elisa Merchan-Ramirez & Victoria Muñoz-Hernandez , 2022. "No evidence of brown adipose tissue activation after 24 weeks of supervised exercise training in young sedentary adults in the ACTIBATE randomized controlled trial," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Shengnan Liu & Siyi Shen & Ying Yan & Chao Sun & Zhiqiang Lu & Hua Feng & Yiruo Ma & Zhili Tang & Jing Yu & Yuting Wu & Balázs Gereben & Petra Mohácsik & Csaba Fekete & Xiaoyun Feng & Feixiang Yuan & , 2022. "Triiodothyronine (T3) promotes brown fat hyperplasia via thyroid hormone receptor α mediated adipocyte progenitor cell proliferation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Tatiana Dandolini Saccon & Felippe Mousovich-Neto & Raissa Guimarães Ludwig & Victor Corasolla Carregari & Ana Beatriz Anjos Souza & Amanda Stephane Cruz Passos & Matheus Cavalheiro Martini & Priscill, 2022. "SARS-CoV-2 infects adipose tissue in a fat depot- and viral lineage-dependent manner," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:587:y:2020:i:7832:d:10.1038_s41586-020-2856-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.