IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v575y2019i7781d10.1038_s41586-019-1689-y.html
   My bibliography  Save this article

Pan-cancer whole-genome analyses of metastatic solid tumours

Author

Listed:
  • Peter Priestley

    (Hartwig Medical Foundation
    Hartwig Medical Foundation Australia)

  • Jonathan Baber

    (Hartwig Medical Foundation
    Hartwig Medical Foundation Australia)

  • Martijn P. Lolkema

    (Center for Personalized Cancer Treatment
    Erasmus MC Cancer Institute)

  • Neeltje Steeghs

    (Center for Personalized Cancer Treatment
    Netherlands Cancer Institute/Antoni van Leeuwenhoekhuis)

  • Ewart Bruijn

    (Hartwig Medical Foundation)

  • Charles Shale

    (Hartwig Medical Foundation Australia)

  • Korneel Duyvesteyn

    (Hartwig Medical Foundation)

  • Susan Haidari

    (Hartwig Medical Foundation
    Center for Personalized Cancer Treatment)

  • Arne Hoeck

    (University Medical Center Utrecht)

  • Wendy Onstenk

    (Hartwig Medical Foundation
    Center for Personalized Cancer Treatment
    Erasmus MC Cancer Institute)

  • Paul Roepman

    (Hartwig Medical Foundation)

  • Mircea Voda

    (Hartwig Medical Foundation)

  • Haiko J. Bloemendal

    (Meander Medisch Centrum
    Radboud University Medical Center)

  • Vivianne C. G. Tjan-Heijnen

    (Maastricht University Medical Center)

  • Carla M. L. Herpen

    (Radboud University Medical Center)

  • Mariette Labots

    (VU Medical Center)

  • Petronella O. Witteveen

    (University Medical Center Utrecht)

  • Egbert F. Smit

    (Center for Personalized Cancer Treatment
    Netherlands Cancer Institute/Antoni van Leeuwenhoekhuis)

  • Stefan Sleijfer

    (Center for Personalized Cancer Treatment
    Erasmus MC Cancer Institute)

  • Emile E. Voest

    (Center for Personalized Cancer Treatment
    Netherlands Cancer Institute/Antoni van Leeuwenhoekhuis)

  • Edwin Cuppen

    (Hartwig Medical Foundation
    Center for Personalized Cancer Treatment
    University Medical Center Utrecht)

Abstract

Metastatic cancer is a major cause of death and is associated with poor treatment efficacy. A better understanding of the characteristics of late-stage cancer is required to help adapt personalized treatments, reduce overtreatment and improve outcomes. Here we describe the largest, to our knowledge, pan-cancer study of metastatic solid tumour genomes, including whole-genome sequencing data for 2,520 pairs of tumour and normal tissue, analysed at median depths of 106× and 38×, respectively, and surveying more than 70 million somatic variants. The characteristic mutations of metastatic lesions varied widely, with mutations that reflect those of the primary tumour types, and with high rates of whole-genome duplication events (56%). Individual metastatic lesions were relatively homogeneous, with the vast majority (96%) of driver mutations being clonal and up to 80% of tumour-suppressor genes being inactivated bi-allelically by different mutational mechanisms. Although metastatic tumour genomes showed similar mutational landscape and driver genes to primary tumours, we find characteristics that could contribute to responsiveness to therapy or resistance in individual patients. We implement an approach for the review of clinically relevant associations and their potential for actionability. For 62% of patients, we identify genetic variants that may be used to stratify patients towards therapies that either have been approved or are in clinical trials. This demonstrates the importance of comprehensive genomic tumour profiling for precision medicine in cancer.

Suggested Citation

  • Peter Priestley & Jonathan Baber & Martijn P. Lolkema & Neeltje Steeghs & Ewart Bruijn & Charles Shale & Korneel Duyvesteyn & Susan Haidari & Arne Hoeck & Wendy Onstenk & Paul Roepman & Mircea Voda & , 2019. "Pan-cancer whole-genome analyses of metastatic solid tumours," Nature, Nature, vol. 575(7781), pages 210-216, November.
  • Handle: RePEc:nat:nature:v:575:y:2019:i:7781:d:10.1038_s41586-019-1689-y
    DOI: 10.1038/s41586-019-1689-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1689-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1689-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oriol Pich & Iker Reyes-Salazar & Abel Gonzalez-Perez & Nuria Lopez-Bigas, 2022. "Discovering the drivers of clonal hematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Zhe Jiang & YoungJun Ju & Amjad Ali & Philip E. D. Chung & Patryk Skowron & Dong-Yu Wang & Mariusz Shrestha & Huiqin Li & Jeff C. Liu & Ioulia Vorobieva & Ronak Ghanbari-Azarnier & Ethel Mwewa & Maria, 2023. "Distinct shared and compartment-enriched oncogenic networks drive primary versus metastatic breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Eline J. M. Bertrums & Jurrian K. Kanter & Lucca L. M. Derks & Mark Verheul & Laurianne Trabut & Markus J. Roosmalen & Henrik Hasle & Evangelia Antoniou & Dirk Reinhardt & Michael N. Dworzak & Nora Mü, 2024. "Selective pressures of platinum compounds shape the evolution of therapy-related myeloid neoplasms," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Tas ML & Van Noesel MM & Van den Boogaard ML & Schild GG & Hehir-Kwa JY & Molenaar JJ & Van Noesel MM & Van de Sande MAJ & Van de Sande MAJ & Bovée JVMG & Flucke UE & Flucke UE & Koster J, 2020. "ZFP42: A New Tumor Predisposition Gene? Presentation of a Patient with two Neoplasms in Childhood," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 27(5), pages 21166-21172, May.
    5. Anouk C. Jong & Alexandra Danyi & Job Riet & Ronald Wit & Martin Sjöström & Felix Feng & Jeroen Ridder & Martijn P. Lolkema, 2023. "Predicting response to enzalutamide and abiraterone in metastatic prostate cancer using whole-omics machine learning," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Lino Möhrmann & Maximilian Werner & Małgorzata Oleś & Andreas Mock & Sebastian Uhrig & Arne Jahn & Simon Kreutzfeldt & Martina Fröhlich & Barbara Hutter & Nagarajan Paramasivam & Daniela Richter & Kat, 2022. "Comprehensive genomic and epigenomic analysis in cancer of unknown primary guides molecularly-informed therapies despite heterogeneity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Xiaojing Wang & Anne-Marie Langevin & Peter J. Houghton & Siyuan Zheng, 2022. "Genomic disparities between cancers in adolescent and young adults and in older adults," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Cambrosio, Alberto & Campbell, Jonah & Keating, Peter & Polk, Jessica B. & Aguilar-Mahecha, Adriana & Basik, Mark, 2022. "Healthcare policy by other means: Cancer clinical research as “oncopolicy”," Social Science & Medicine, Elsevier, vol. 292(C).
    9. Roberta Esposito & Andrés Lanzós & Tina Uroda & Sunandini Ramnarayanan & Isabel Büchi & Taisia Polidori & Hugo Guillen-Ramirez & Ante Mihaljevic & Bernard Mefi Merlin & Lia Mela & Eugenio Zoni & Lusin, 2023. "Tumour mutations in long noncoding RNAs enhance cell fitness," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Nikki L. Burdett & Madelynne O. Willis & Ahwan Pandey & Laura Twomey & Sara Alaei & David D. L. Bowtell & Elizabeth L. Christie, 2024. "Timing of whole genome duplication is associated with tumor-specific MHC-II depletion in serous ovarian cancer," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Andrey A. Yurchenko & Fatemeh Rajabi & Tirzah Braz-Petta & Hiva Fassihi & Alan Lehmann & Chikako Nishigori & Jinxin Wang & Ismael Padioleau & Konstantin Gunbin & Leonardo Panunzi & Fanny Morice-Picard, 2023. "Genomic mutation landscape of skin cancers from DNA repair-deficient xeroderma pigmentosum patients," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. W. Dean Pontius & Ellen S. Hong & Zachary J. Faber & Jeremy Gray & Craig D. Peacock & Ian Bayles & Katreya Lovrenert & Diana H. Chin & Berkley E. Gryder & Cynthia F. Bartels & Peter C. Scacheri, 2023. "Temporal chromatin accessibility changes define transcriptional states essential for osteosarcoma metastasis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Ozvan Bocher & Cristen J. Willer & Eleftheria Zeggini, 2023. "Unravelling the genetic architecture of human complex traits through whole genome sequencing," Nature Communications, Nature, vol. 14(1), pages 1-4, December.
    14. Maud Rijnders & J. Alberto Nakauma-González & Debbie G. J. Robbrecht & Alberto Gil-Jimenez & Hayri E. Balcioglu & Astrid A. M. Oostvogels & Maureen J. B. Aarts & Joost L. Boormans & Paul Hamberg & Mic, 2024. "Gene-expression-based T-Cell-to-Stroma Enrichment (TSE) score predicts response to immune checkpoint inhibitors in urothelial cancer," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Zhu, Guang & Lin, Zhenhua, 2021. "Commentary on statistical mechanical models of cancer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    16. Mischan Vali-Pour & Solip Park & Jose Espinosa-Carrasco & Daniel Ortiz-Martínez & Ben Lehner & Fran Supek, 2022. "The impact of rare germline variants on human somatic mutation processes," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    17. Erik Elias & Arman Ardalan & Markus Lindberg & Susanne E. Reinsbach & Andreas Muth & Ola Nilsson & Yvonne Arvidsson & Erik Larsson, 2021. "Independent somatic evolution underlies clustered neuroendocrine tumors in the human small intestine," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    18. Luan Nguyen & Arne Hoeck & Edwin Cuppen, 2022. "Machine learning-based tissue of origin classification for cancer of unknown primary diagnostics using genome-wide mutation features," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Marta Palafox & Laia Monserrat & Meritxell Bellet & Guillermo Villacampa & Abel Gonzalez-Perez & Mafalda Oliveira & Fara Brasó-Maristany & Nusaibah Ibrahimi & Srinivasaraghavan Kannan & Leonardo Mina , 2022. "High p16 expression and heterozygous RB1 loss are biomarkers for CDK4/6 inhibitor resistance in ER+ breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:575:y:2019:i:7781:d:10.1038_s41586-019-1689-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.