IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v569y2019i7756d10.1038_s41586-019-1182-7.html
   My bibliography  Save this article

Transcription factors and 3D genome conformation in cell-fate decisions

Author

Listed:
  • Ralph Stadhouders

    (Erasmus MC
    Erasmus MC)

  • Guillaume J. Filion

    (The Barcelona Institute of Science and Technology
    Universitat Pompeu Fabra (UPF))

  • Thomas Graf

    (The Barcelona Institute of Science and Technology
    Universitat Pompeu Fabra (UPF))

Abstract

How cells adopt different identities has long fascinated biologists. Signal transduction in response to environmental cues results in the activation of transcription factors that determine the gene-expression program characteristic of each cell type. Technological advances in the study of 3D chromatin folding are bringing the role of genome conformation in transcriptional regulation to the fore. Characterizing this role of genome architecture has profound implications, not only for differentiation and development but also for diseases including developmental malformations and cancer. Here we review recent studies indicating that the interplay between transcription and genome conformation is a driving force for cell-fate decisions.

Suggested Citation

  • Ralph Stadhouders & Guillaume J. Filion & Thomas Graf, 2019. "Transcription factors and 3D genome conformation in cell-fate decisions," Nature, Nature, vol. 569(7756), pages 345-354, May.
  • Handle: RePEc:nat:nature:v:569:y:2019:i:7756:d:10.1038_s41586-019-1182-7
    DOI: 10.1038/s41586-019-1182-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1182-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1182-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Li & Zebei Han & Yu Sun & Fu Wang & Pengzhen Hu & Yuang Gao & Xuemei Bai & Shiyu Peng & Chao Ren & Xiang Xu & Zeyu Liu & Hebing Chen & Yang Yang & Xiaochen Bo, 2024. "CGMega: explainable graph neural network framework with attention mechanisms for cancer gene module dissection," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Wen Jun Xie & Yifeng Qi & Bin Zhang, 2020. "Characterizing chromatin folding coordinate and landscape with deep learning," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-19, September.
    3. Fadi J. Najm & Peter DeWeirdt & Molly M. Moore & Samantha M. Bevill & Chadi A. El Farran & Kevin A. Macias & Mudra Hegde & Amanda L. Waterbury & Brian B. Liau & Peter Galen & John G. Doench & Bradley , 2023. "Chromatin complex dependencies reveal targeting opportunities in leukemia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Gabrielle A. Dotson & Can Chen & Stephen Lindsly & Anthony Cicalo & Sam Dilworth & Charles Ryan & Sivakumar Jeyarajan & Walter Meixner & Cooper Stansbury & Joshua Pickard & Nicholas Beckloff & Amit Su, 2022. "Deciphering multi-way interactions in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Maria A. Missinato & Sean Murphy & Michaela Lynott & Michael S. Yu & Anaïs Kervadec & Yu-Ling Chang & Suraj Kannan & Mafalda Loreti & Christopher Lee & Prashila Amatya & Hiroshi Tanaka & Chun-Teng Hua, 2023. "Conserved transcription factors promote cell fate stability and restrict reprogramming potential in differentiated cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Zhi Liu & Dong-Sung Lee & Yuqiong Liang & Ye Zheng & Jesse R. Dixon, 2023. "Foxp3 orchestrates reorganization of chromatin architecture to establish regulatory T cell identity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Jiegen Wu & Baoqiang Chen & Yadi Liu & Liang Ma & Wen Huang & Yihan Lin, 2022. "Modulating gene regulation function by chemically controlled transcription factor clustering," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Mingsen Li & Huizhen Guo & Bofeng Wang & Zhuo Han & Siqi Wu & Jiafeng Liu & Huaxing Huang & Jin Zhu & Fengjiao An & Zesong Lin & Kunlun Mo & Jieying Tan & Chunqiao Liu & Li Wang & Xin Deng & Guigang L, 2024. "The single-cell transcriptomic atlas and RORA-mediated 3D epigenomic remodeling in driving corneal epithelial differentiation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Hui Wang & Boyuan Li & Linyu Zuo & Bo Wang & Yan Yan & Kai Tian & Rong Zhou & Chenlu Wang & Xizi Chen & Yongpeng Jiang & Haonan Zheng & Fangfei Qin & Bin Zhang & Yang Yu & Chao-Pei Liu & Yanhui Xu & J, 2022. "The transcriptional coactivator RUVBL2 regulates Pol II clustering with diverse transcription factors," Nature Communications, Nature, vol. 13(1), pages 1-26, December.
    10. Tomas Zelenka & Antonios Klonizakis & Despina Tsoukatou & Dionysios-Alexandros Papamatheakis & Sören Franzenburg & Petros Tzerpos & Ioannis-Rafail Tzonevrakis & George Papadogkonas & Manouela Kapsetak, 2022. "The 3D enhancer network of the developing T cell genome is shaped by SATB1," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    11. Jiaxi Zhao & Nicholas C. Lammers & Simon Alamos & Yang Joon Kim & Gabriella Martini & Hernan G. Garcia, 2024. "Optogenetic dissection of transcriptional repression in a multicellular organism," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Mattia Zaghi & Federica Banfi & Luca Massimino & Monica Volpin & Edoardo Bellini & Simone Brusco & Ivan Merelli & Cristiana Barone & Michela Bruni & Linda Bossini & Luigi Antonio Lamparelli & Laura Pi, 2023. "Balanced SET levels favor the correct enhancer repertoire during cell fate acquisition," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:569:y:2019:i:7756:d:10.1038_s41586-019-1182-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.