IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55403-7.html
   My bibliography  Save this article

Footprint-C reveals transcription factor modes in local clusters and long-range chromatin interactions

Author

Listed:
  • Xiaokun Liu

    (China National Center for Bioinformation
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Hanhan Wei

    (China National Center for Bioinformation
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qifan Zhang

    (China National Center for Bioinformation
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Na Zhang

    (Capital Medical University, Beijing Maternal and Child Health Care Hospital)

  • Qingqing Wu

    (Capital Medical University, Beijing Maternal and Child Health Care Hospital)

  • Chenhuan Xu

    (China National Center for Bioinformation
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

The proximity ligation-based Hi-C and derivative methods are the mainstream tools to study genome-wide chromatin interactions. These methods often fragment the genome using enzymes functionally irrelevant to the interactions per se, restraining the efficiency in identifying structural features and the underlying regulatory elements. Here we present Footprint-C, which yields high-resolution chromatin contact maps built upon intact and genuine footprints protected by transcription factor (TF) binding. When analyzed at one-dimensional level, the billions of chromatin contacts from Footprint-C enable genome-wide analysis at single footprint resolution, and reveal preferential modes of local TF co-occupancy. At pairwise contact level, Footprint-C exhibits higher efficiency in identifying chromatin structural features when compared with other Hi-C methods, segregates chromatin interactions emanating from adjacent TF footprints, and uncovers multiway interactions involving different TFs. Altogether, Footprint-C results suggest that rich regulatory modes of TF may underlie both local residence and distal chromatin interactions, in terms of TF identity, valency, and conformational configuration.

Suggested Citation

  • Xiaokun Liu & Hanhan Wei & Qifan Zhang & Na Zhang & Qingqing Wu & Chenhuan Xu, 2024. "Footprint-C reveals transcription factor modes in local clusters and long-range chromatin interactions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55403-7
    DOI: 10.1038/s41467-024-55403-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55403-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55403-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ralph Stadhouders & Guillaume J. Filion & Thomas Graf, 2019. "Transcription factors and 3D genome conformation in cell-fate decisions," Nature, Nature, vol. 569(7756), pages 345-354, May.
    2. Sora Yoon & Aditi Chandra & Golnaz Vahedi, 2022. "Stripenn detects architectural stripes from chromatin conformation data using computer vision," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Brynn N. Akerberg & Fei Gu & Nathan J. VanDusen & Xiaoran Zhang & Rui Dong & Kai Li & Bing Zhang & Bin Zhou & Isha Sethi & Qing Ma & Lauren Wasson & Tong Wen & Jinhua Liu & Kunzhe Dong & Frank L. Conl, 2019. "A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    4. Jie Xu & Fan Song & Huijue Lyu & Mikoto Kobayashi & Baozhen Zhang & Ziyu Zhao & Ye Hou & Xiaotao Wang & Yu Luan & Bei Jia & Lena Stasiak & Josiah Hiu-yuen Wong & Qixuan Wang & Qi Jin & Qiushi Jin & Yi, 2022. "Subtype-specific 3D genome alteration in acute myeloid leukaemia," Nature, Nature, vol. 611(7935), pages 387-398, November.
    5. Kai Zhang & Nan Li & Richard I. Ainsworth & Wei Wang, 2016. "Systematic identification of protein combinations mediating chromatin looping," Nature Communications, Nature, vol. 7(1), pages 1-11, November.
    6. Zhengyu Liang & Guipeng Li & Zejun Wang & Mohamed Nadhir Djekidel & Yanjian Li & Min-Ping Qian & Michael Q. Zhang & Yang Chen, 2017. "BL-Hi-C is an efficient and sensitive approach for capturing structural and regulatory chromatin interactions," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    7. Jeff Vierstra & John Lazar & Richard Sandstrom & Jessica Halow & Kristen Lee & Daniel Bates & Morgan Diegel & Douglas Dunn & Fidencio Neri & Eric Haugen & Eric Rynes & Alex Reynolds & Jemma Nelson & A, 2020. "Global reference mapping of human transcription factor footprints," Nature, Nature, vol. 583(7818), pages 729-736, July.
    8. Shuai Liu & Yaqiang Cao & Kairong Cui & Qingsong Tang & Keji Zhao, 2022. "Hi-TrAC reveals division of labor of transcription factors in organizing chromatin loops," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Emily Crane & Qian Bian & Rachel Patton McCord & Bryan R. Lajoie & Bayly S. Wheeler & Edward J. Ralston & Satoru Uzawa & Job Dekker & Barbara J. Meyer, 2015. "Condensin-driven remodelling of X chromosome topology during dosage compensation," Nature, Nature, vol. 523(7559), pages 240-244, July.
    10. Ilias Georgakopoulos-Soares & Chengyu Deng & Vikram Agarwal & Candace S. Y. Chan & Jingjing Zhao & Fumitaka Inoue & Nadav Ahituv, 2023. "Transcription factor binding site orientation and order are major drivers of gene regulatory activity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Qiling Zhou & Miao Yu & Roberto Tirado-Magallanes & Bin Li & Lingshi Kong & Mingrui Guo & Zi Hui Tan & Sanghoon Lee & Li Chai & Akihiko Numata & Touati Benoukraf & Melissa Jane Fullwood & Motomi Osato, 2021. "ZNF143 mediates CTCF-bound promoter–enhancer loops required for murine hematopoietic stem and progenitor cell function," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    12. Cyril Matthey-Doret & Lyam Baudry & Axel Breuer & Rémi Montagne & Nadège Guiglielmoni & Vittore Scolari & Etienne Jean & Arnaud Campeas & Philippe Henri Chanut & Edgar Oriol & Adrien Méot & Laurent Po, 2020. "Computer vision for pattern detection in chromosome contact maps," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Li & Zebei Han & Yu Sun & Fu Wang & Pengzhen Hu & Yuang Gao & Xuemei Bai & Shiyu Peng & Chao Ren & Xiang Xu & Zeyu Liu & Hebing Chen & Yang Yang & Xiaochen Bo, 2024. "CGMega: explainable graph neural network framework with attention mechanisms for cancer gene module dissection," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Xianhui Huang & Yuejin Wang & Sainan Zhang & Liuling Pei & Jiaqi You & Yuexuan Long & Jianying Li & Xianlong Zhang & Longfu Zhu & Maojun Wang, 2024. "Epigenomic and 3D genomic mapping reveals developmental dynamics and subgenomic asymmetry of transcriptional regulatory architecture in allotetraploid cotton," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Jacques Serizay & Cyril Matthey-Doret & Amaury Bignaud & Lyam Baudry & Romain Koszul, 2024. "Orchestrating chromosome conformation capture analysis with Bioconductor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Yanlin Zhang & Mathieu Blanchette, 2022. "Reference panel guided topological structure annotation of Hi-C data," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Olivier Messina & Flavien Raynal & Julian Gurgo & Jean-Bernard Fiche & Vera Pancaldi & Marcelo Nollmann, 2023. "3D chromatin interactions involving Drosophila insulators are infrequent but preferential and arise before TADs and transcription," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Muran Xiao & Shinji Kondo & Masaki Nomura & Shinichiro Kato & Koutarou Nishimura & Weijia Zang & Yifan Zhang & Tomohiro Akashi & Aaron Viny & Tsukasa Shigehiro & Tomokatsu Ikawa & Hiromi Yamazaki & Mi, 2023. "BRD9 determines the cell fate of hematopoietic stem cells by regulating chromatin state," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    7. Zhen-Hui Wang & Xin-Feng Wang & Tianyuan Lu & Ming-Rui Li & Peng Jiang & Jing Zhao & Si-Tong Liu & Xue-Qi Fu & Jonathan F. Wendel & Yves Peer & Bao Liu & Lin-Feng Li, 2022. "Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Alexendar R. Perez & Laura Sala & Richard K. Perez & Joana A. Vidigal, 2021. "CSC software corrects off-target mediated gRNA depletion in CRISPR-Cas9 essentiality screens," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Maria A. Missinato & Sean Murphy & Michaela Lynott & Michael S. Yu & Anaïs Kervadec & Yu-Ling Chang & Suraj Kannan & Mafalda Loreti & Christopher Lee & Prashila Amatya & Hiroshi Tanaka & Chun-Teng Hua, 2023. "Conserved transcription factors promote cell fate stability and restrict reprogramming potential in differentiated cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Andreas Herchenröther & Stefanie Gossen & Tobias Friedrich & Alexander Reim & Nadine Daus & Felix Diegmüller & Jörg Leers & Hakimeh Moghaddas Sani & Sarah Gerstner & Leah Schwarz & Inga Stellmacher & , 2023. "The H2A.Z and NuRD associated protein HMG20A controls early head and heart developmental transcription programs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    11. Chong Wang & Xiang Liu & Jun Liang & Yohei Narita & Weiyue Ding & Difei Li & Luyao Zhang & Hongbo Wang & Merrin Man Long Leong & Isabella Hou & Catherine Gerdt & Chang Jiang & Qian Zhong & Zhonghui Ta, 2023. "A DNA tumor virus globally reprograms host 3D genome architecture to achieve immortal growth," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Zhaowei Chu & Lei Gu & Yeguang Hu & Xiaoyang Zhang & Man Li & Jiajia Chen & Da Teng & Man Huang & Che-Hung Shen & Li Cai & Toshimi Yoshida & Yifeng Qi & Zhixin Niu & Austin Feng & Songmei Geng & Denni, 2022. "STAG2 regulates interferon signaling in melanoma via enhancer loop reprogramming," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Jiaxi Zhao & Nicholas C. Lammers & Simon Alamos & Yang Joon Kim & Gabriella Martini & Hernan G. Garcia, 2024. "Optogenetic dissection of transcriptional repression in a multicellular organism," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Sonali Narang & Yohana Ghebrechristos & Nikki A. Evensen & Nina Murrell & Sylwia Jasinski & Talia H. Ostrow & David T. Teachey & Elizabeth A. Raetz & Timothee Lionnet & Matthew Witkowski & Iannis Aifa, 2024. "Clonal evolution of the 3D chromatin landscape in patients with relapsed pediatric B-cell acute lymphoblastic leukemia," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Jie Zhao & Meng Zhang & Wenyan Hui & Yue Zhang & Jing Wang & Shaojing Wang & Lai-Yu Kwok & Jian Kong & Heping Zhang & Wenyi Zhang, 2023. "Roles of adenine methylation in the physiology of Lacticaseibacillus paracasei," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Brent S. Perlman & Noah Burget & Yeqiao Zhou & Gregory W. Schwartz & Jelena Petrovic & Zora Modrusan & Robert B. Faryabi, 2024. "Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    17. Ryuichiro Nakato & Toyonori Sakata & Jiankang Wang & Luis Augusto Eijy Nagai & Yuya Nagaoka & Gina Miku Oba & Masashige Bando & Katsuhiko Shirahige, 2023. "Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Koon-Kiu Yan & Shaoke Lou & Mark Gerstein, 2017. "MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-22, July.
    19. Hye Ji Cha & Özgün Uyan & Yan Kai & Tianxin Liu & Qian Zhu & Zuzana Tothova & Giovanni A. Botten & Jian Xu & Guo-Cheng Yuan & Job Dekker & Stuart H. Orkin, 2021. "Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    20. Zhao Wang & Qian Liang & Xinyi Qian & Bolang Hu & Zhanye Zheng & Jianhua Wang & Yuelin Hu & Zhengkai Bao & Ke Zhao & Yao Zhou & Xiangling Feng & Xianfu Yi & Jin Li & Jiandang Shi & Zhe Liu & Jihui Hao, 2023. "An autoimmune pleiotropic SNP modulates IRF5 alternative promoter usage through ZBTB3-mediated chromatin looping," Nature Communications, Nature, vol. 14(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55403-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.