IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26486-3.html
   My bibliography  Save this article

Smad4 controls signaling robustness and morphogenesis by differentially contributing to the Nodal and BMP pathways

Author

Listed:
  • Luca Guglielmi

    (The Francis Crick Institute)

  • Claire Heliot

    (The Francis Crick Institute)

  • Sunil Kumar

    (The Francis Crick Institute)

  • Yuriy Alexandrov

    (The Francis Crick Institute)

  • Ilaria Gori

    (The Francis Crick Institute)

  • Foteini Papaleonidopoulou

    (The Francis Crick Institute)

  • Christopher Barrington

    (The Francis Crick Institute)

  • Philip East

    (The Francis Crick Institute)

  • Andrew D. Economou

    (The Francis Crick Institute)

  • Paul M. W. French

    (Imperial College London)

  • James McGinty

    (Imperial College London)

  • Caroline S. Hill

    (The Francis Crick Institute)

Abstract

The transcriptional effector SMAD4 is a core component of the TGF-β family signaling pathways. However, its role in vertebrate embryo development remains unresolved. To address this, we deleted Smad4 in zebrafish and investigated the consequences of this on signaling by the TGF-β family morphogens, BMPs and Nodal. We demonstrate that in the absence of Smad4, dorsal/ventral embryo patterning is disrupted due to the loss of BMP signaling. However, unexpectedly, Nodal signaling is maintained, but lacks robustness. This Smad4-independent Nodal signaling is sufficient for mesoderm specification, but not for optimal endoderm specification. Furthermore, using Optical Projection Tomography in combination with 3D embryo morphometry, we have generated a BMP morphospace and demonstrate that Smad4 mutants are morphologically indistinguishable from embryos in which BMP signaling has been genetically/pharmacologically perturbed. Smad4 is thus differentially required for signaling by different TGF-β family ligands, which has implications for diseases where Smad4 is mutated or deleted.

Suggested Citation

  • Luca Guglielmi & Claire Heliot & Sunil Kumar & Yuriy Alexandrov & Ilaria Gori & Foteini Papaleonidopoulou & Christopher Barrington & Philip East & Andrew D. Economou & Paul M. W. French & James McGint, 2021. "Smad4 controls signaling robustness and morphogenesis by differentially contributing to the Nodal and BMP pathways," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26486-3
    DOI: 10.1038/s41467-021-26486-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26486-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26486-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xin Chen & Ellen Weisberg & Valerie Fridmacher & Minoru Watanabe & Grace Naco & Malcolm Whitman, 1997. "Smad4 and FAST-1 in the assembly of activin-responsive factor," Nature, Nature, vol. 389(6646), pages 85-89, September.
    2. Mohamed A. El-Brolosy & Zacharias Kontarakis & Andrea Rossi & Carsten Kuenne & Stefan Günther & Nana Fukuda & Khrievono Kikhi & Giulia L. M. Boezio & Carter M. Takacs & Shih-Lei Lai & Ryuichi Fukuda &, 2019. "Genetic compensation triggered by mutant mRNA degradation," Nature, Nature, vol. 568(7751), pages 193-197, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radoslaw Pluta & Eric Aragón & Nicholas A. Prescott & Lidia Ruiz & Rebeca A. Mees & Blazej Baginski & Julia R. Flood & Pau Martin-Malpartida & Joan Massagué & Yael David & Maria J. Macias, 2022. "Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Antonios Apostolopoulos & Naohiro Kawamoto & Siu Yu A. Chow & Hitomi Tsuiji & Yoshiho Ikeuchi & Yuichi Shichino & Shintaro Iwasaki, 2024. "dCas13-mediated translational repression for accurate gene silencing in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Federica Diofano & Karolina Weinmann & Isabelle Schneider & Kevin D Thiessen & Wolfgang Rottbauer & Steffen Just, 2020. "Genetic compensation prevents myopathy and heart failure in an in vivo model of Bag3 deficiency," PLOS Genetics, Public Library of Science, vol. 16(11), pages 1-24, November.
    4. Vishnu Muraleedharan Saraswathy & Lili Zhou & Mayssa H. Mokalled, 2024. "Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    5. Thomas Juan & Agatha Ribeiro da Silva & Bárbara Cardoso & SoEun Lim & Violette Charteau & Didier Y. R. Stainier, 2023. "Multiple pkd and piezo gene family members are required for atrioventricular valve formation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Meijiang Gao & Marina Veil & Marcus Rosenblatt & Aileen Julia Riesle & Anna Gebhard & Helge Hass & Lenka Buryanova & Lev Y. Yampolsky & Björn Grüning & Sergey V. Ulianov & Jens Timmer & Daria Onichtch, 2022. "Pluripotency factors determine gene expression repertoire at zygotic genome activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Min Zhou & Yuan Li & Xiao-Lei Yao & Jing Zhang & Sheng Liu & Hong-Rui Cao & Shuang Bai & Chun-Qu Chen & Dan-Xun Zhang & Ao Xu & Jia-Ning Lei & Qian-Zhuo Mao & Yu Zhou & De-Qiang Duanmu & Yue-Feng Guan, 2024. "Inorganic nitrogen inhibits symbiotic nitrogen fixation through blocking NRAMP2-mediated iron delivery in soybean nodules," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Lior Fishman & Avani Modak & Gal Nechooshtan & Talya Razin & Florian Erhard & Aviv Regev & Jeffrey A. Farrell & Michal Rabani, 2024. "Cell-type-specific mRNA transcription and degradation kinetics in zebrafish embryogenesis from metabolically labeled single-cell RNA-seq," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. Johannes Benedum & Vedran Franke & Lisa-Marie Appel & Lena Walch & Melania Bruno & Rebecca Schneeweiss & Juliane Gruber & Helena Oberndorfer & Emma Frank & Xué Strobl & Anton Polyansky & Bojan Zagrovi, 2023. "The SPOC proteins DIDO3 and PHF3 co-regulate gene expression and neuronal differentiation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. Chao Fang & Zhihui Sun & Shichen Li & Tong Su & Lingshuang Wang & Lidong Dong & Haiyang Li & Lanxin Li & Lingping Kong & Zhiquan Yang & Xiaoya Lin & Alibek Zatybekov & Baohui Liu & Fanjiang Kong & Sij, 2024. "Subfunctionalisation and self-repression of duplicated E1 homologues finetunes soybean flowering and adaptation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Juqi Zou & Satoshi Anai & Satoshi Ota & Shizuka Ishitani & Masayuki Oginuma & Tohru Ishitani, 2023. "Determining zebrafish dorsal organizer size by a negative feedback loop between canonical/non-canonical Wnts and Tlr4/NFκB," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Ádám Sturm & Éva Saskői & Bernadette Hotzi & Anna Tarnóci & János Barna & Ferenc Bodnár & Himani Sharma & Tibor Kovács & Eszter Ari & Nóra Weinhardt & Csaba Kerepesi & András Perczel & Zoltán Ivics & , 2023. "Downregulation of transposable elements extends lifespan in Caenorhabditis elegans," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Lee B. Miles & Vanessa Calcinotto & Sara Oveissi & Rita J. Serrano & Carmen Sonntag & Orlen Mulia & Clara Lee & Robert J. Bryson-Richardson, 2024. "CRIMP: a CRISPR/Cas9 insertional mutagenesis protocol and toolkit," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Katarzyna Niescierowicz & Leszek Pryszcz & Cristina Navarrete & Eugeniusz Tralle & Agata Sulej & Karim Abu Nahia & Marta Elżbieta Kasprzyk & Katarzyna Misztal & Abhishek Pateria & Adrianna Pakuła & Ma, 2022. "Adar-mediated A-to-I editing is required for embryonic patterning and innate immune response regulation in zebrafish," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26486-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.