IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v564y2018i7735d10.1038_s41586-018-0776-9.html
   My bibliography  Save this article

Increased variability of eastern Pacific El Niño under greenhouse warming

Author

Listed:
  • Wenju Cai

    (Ocean University of China and Qingdao National Laboratory for Marine Science and Technology
    Centre for Southern Hemisphere Oceans Research (CSHOR), CSIRO Oceans and Atmosphere)

  • Guojian Wang

    (Ocean University of China and Qingdao National Laboratory for Marine Science and Technology
    Centre for Southern Hemisphere Oceans Research (CSHOR), CSIRO Oceans and Atmosphere)

  • Boris Dewitte

    (Centro de Estudios Avanzados en Zonas Áridas
    Universidad Católica del Norte
    Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands
    Laboratoire d’Etudes en Géophysique et Océanographie Spatiales)

  • Lixin Wu

    (Ocean University of China and Qingdao National Laboratory for Marine Science and Technology)

  • Agus Santoso

    (Centre for Southern Hemisphere Oceans Research (CSHOR), CSIRO Oceans and Atmosphere
    The University of New South Wales)

  • Ken Takahashi

    (Servicio Nacional de Meteorología e Hidrología del Perú—SENAMHI)

  • Yun Yang

    (Beijing Normal University and University Corporation for Polar Research)

  • Aude Carréric

    (Laboratoire d’Etudes en Géophysique et Océanographie Spatiales)

  • Michael J. McPhaden

    (NOAA/Pacific Marine Environmental Laboratory)

Abstract

The El Niño–Southern Oscillation (ENSO) is the dominant and most consequential climate variation on Earth, and is characterized by warming of equatorial Pacific sea surface temperatures (SSTs) during the El Niño phase and cooling during the La Niña phase. ENSO events tend to have a centre—corresponding to the location of the maximum SST anomaly—in either the central equatorial Pacific (5° S–5° N, 160° E–150° W) or the eastern equatorial Pacific (5° S–5° N, 150°–90° W); these two distinct types of ENSO event are referred to as the CP-ENSO and EP-ENSO regimes, respectively. How the ENSO may change under future greenhouse warming is unknown, owing to a lack of inter-model agreement over the response of SSTs in the eastern equatorial Pacific to such warming. Here we find a robust increase in future EP-ENSO SST variability among CMIP5 climate models that simulate the two distinct ENSO regimes. We show that the EP-ENSO SST anomaly pattern and its centre differ greatly from one model to another, and therefore cannot be well represented by a single SST ‘index’ at the observed centre. However, although the locations of the anomaly centres differ in each model, we find a robust increase in SST variability at each anomaly centre across the majority of models considered. This increase in variability is largely due to greenhouse-warming-induced intensification of upper-ocean stratification in the equatorial Pacific, which enhances ocean–atmosphere coupling. An increase in SST variance implies an increase in the number of ‘strong’ EP-El Niño events (corresponding to large SST anomalies) and associated extreme weather events.

Suggested Citation

  • Wenju Cai & Guojian Wang & Boris Dewitte & Lixin Wu & Agus Santoso & Ken Takahashi & Yun Yang & Aude Carréric & Michael J. McPhaden, 2018. "Increased variability of eastern Pacific El Niño under greenhouse warming," Nature, Nature, vol. 564(7735), pages 201-206, December.
  • Handle: RePEc:nat:nature:v:564:y:2018:i:7735:d:10.1038_s41586-018-0776-9
    DOI: 10.1038/s41586-018-0776-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0776-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0776-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davis, Katrina J, 2022. "Managed culls mean extinction for a marine mammal population when combined with extreme climate impacts," Ecological Modelling, Elsevier, vol. 473(C).
    2. J. J. Adolfo Tortolero-Langarica & Alma P. Rodríguez-Troncoso & Amílcar L. Cupul-Magaña & Baruch Rinkevich, 2020. "Micro-Fragmentation as an Effective and Applied Tool to Restore Remote Reefs in the Eastern Tropical Pacific," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    3. Farrah Powell & Arielle Levine & Lucia Ordonez-Gauger, 2022. "Climate adaptation in the market squid fishery: fishermen responses to past variability associated with El Niño Southern Oscillation cycles inform our understanding of adaptive capacity in the face of," Climatic Change, Springer, vol. 173(1), pages 1-21, July.
    4. Juliana Restrepo-Trujillo & Ricardo Moreno-Chuquen & Francy N. Jiménez-García & Wilfredo C. Flores & Harold R. Chamorro, 2022. "Scenario Analysis of an Electric Power System in Colombia Considering the El Niño Phenomenon and the Inclusion of Renewable Energies," Energies, MDPI, vol. 15(18), pages 1-17, September.
    5. Joshua B. Horton & Penehuro Lefale & David Keith, 2021. "Parametric Insurance for Solar Geoengineering: Insights from the Pacific Catastrophe Risk Assessment and Financing Initiative," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 97-107, April.
    6. Raphael J. Nawrotzki & Marina Tebeck & Sven Harten & Venya Blankenagel, 2023. "Climate change vulnerability hotspots in Costa Rica: constructing a sub-national index," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(3), pages 473-499, September.
    7. Katharina Waha & John Clarke & Kavina Dayal & Mandy Freund & Craig Heady & Irene Parisi & Elisabeth Vogel, 2022. "Past and future rainfall changes in the Australian midlatitudes and implications for agriculture," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    8. Yu Huang & Hong-Li Ren & Jong-Seong Kug & Run Wang & Jingxin Li, 2023. "Projected change of East-Asian winter precipitation related to strong El Niño under the future emission scenarios," Climatic Change, Springer, vol. 176(7), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:564:y:2018:i:7735:d:10.1038_s41586-018-0776-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.