IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i18p6574-d411184.html
   My bibliography  Save this article

Micro-Fragmentation as an Effective and Applied Tool to Restore Remote Reefs in the Eastern Tropical Pacific

Author

Listed:
  • J. J. Adolfo Tortolero-Langarica

    (Tecnológico Nacional de México/IT Bahía de Banderas, Crucero a Punta de Mita S/N, Bahía de Banderas, C.P., Nayarit 63734, Mexico)

  • Alma P. Rodríguez-Troncoso

    (Laboratorio de Ecología Marina, Centro de Investigaciones Costeras, Centro Universitario de la Costa, Universidad de Guadalajara. Av. Universidad No. 203, Puerto Vallarta, C.P., Jalisco 48280, Mexico)

  • Amílcar L. Cupul-Magaña

    (Laboratorio de Ecología Marina, Centro de Investigaciones Costeras, Centro Universitario de la Costa, Universidad de Guadalajara. Av. Universidad No. 203, Puerto Vallarta, C.P., Jalisco 48280, Mexico)

  • Baruch Rinkevich

    (Israel Oceanography and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel)

Abstract

Coral reef ecosystems are continuously degraded by anthropogenic and climate change drivers, causing a widespread decline in reef biodiversity and associated goods and services. In response, active restoration methodologies and practices have been developed globally to compensate for losses due to reef degradation. Yet, most activities employ the gardening concept that uses coral nurseries, and are centered in easily-accessible reefs, with existing infrastructure, and impractical for coral reefs in remote locations. Here we evaluate the effectiveness of direct outplanting of coral micro-fragments ( Pavona clavus and Pocillopora spp.) as a novel approach to restore remote reefs in the Islas Marías archipelago in the Eastern Tropical Pacific. Coral growth (height-width-tissue cover), survival percentage, extension rates (cm year −1 ), skeletal density (g cm −3 ) and calcification rates (g cm −2 year −1 ) were assessed over 13 months of restoration. In spite of detrimental effects of Hurricane Willa, transplants showed a greater-than-twofold increase in all growth metrics, with ~58–61% survival rate and fast self-attachment (within ~3.9 months) for studied species, with Pocilloporids exhibiting higher extension, skeletal density, and calcification rates than Pavona . While comprehensive long-term studies are required, direct transplantation methodologies of coral micro-fragments are emerging as time-effective and affordable restoration tools to mitigate anthropogenic and climate change impacts in remote and marginal reefs.

Suggested Citation

  • J. J. Adolfo Tortolero-Langarica & Alma P. Rodríguez-Troncoso & Amílcar L. Cupul-Magaña & Baruch Rinkevich, 2020. "Micro-Fragmentation as an Effective and Applied Tool to Restore Remote Reefs in the Eastern Tropical Pacific," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:18:p:6574-:d:411184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/18/6574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/18/6574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John F Bruno & Elizabeth R Selig, 2007. "Regional Decline of Coral Cover in the Indo-Pacific: Timing, Extent, and Subregional Comparisons," PLOS ONE, Public Library of Science, vol. 2(8), pages 1-8, August.
    2. Terry P. Hughes & James T. Kerry & Andrew H. Baird & Sean R. Connolly & Andreas Dietzel & C. Mark Eakin & Scott F. Heron & Andrew S. Hoey & Mia O. Hoogenboom & Gang Liu & Michael J. McWilliam & Rachel, 2018. "Global warming transforms coral reef assemblages," Nature, Nature, vol. 556(7702), pages 492-496, April.
    3. Wenju Cai & Guojian Wang & Boris Dewitte & Lixin Wu & Agus Santoso & Ken Takahashi & Yun Yang & Aude Carréric & Michael J. McPhaden, 2018. "Increased variability of eastern Pacific El Niño under greenhouse warming," Nature, Nature, vol. 564(7735), pages 201-206, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    2. Phillip K Lowe & John F Bruno & Elizabeth R Selig & Matthew Spencer, 2011. "Empirical Models of Transitions between Coral Reef States: Effects of Region, Protection, and Environmental Change," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-15, November.
    3. Tu, Chengyi & Fan, Ying & Shi, Tianyu, 2024. "Dimensionality reduction of networked systems with separable coupling-dynamics: Theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Adriana Humanes & Liam Lachs & Elizabeth Beauchamp & Leah Bukurou & Daisy Buzzoni & John Bythell & Jamie R. K. Craggs & Ruben Torre Cerro & Alasdair J. Edwards & Yimnang Golbuu & Helios M. Martinez & , 2024. "Selective breeding enhances coral heat tolerance to marine heatwaves," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Conrad W Speed & Russ C Babcock & Kevin P Bancroft & Lynnath E Beckley & Lynda M Bellchambers & Martial Depczynski & Stuart N Field & Kim J Friedman & James P Gilmour & Jean-Paul A Hobbs & Halina T Ko, 2013. "Dynamic Stability of Coral Reefs on the West Australian Coast," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    6. Edgar Santos‐Fernandez & Erin E. Peterson & Julie Vercelloni & Em Rushworth & Kerrie Mengersen, 2021. "Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 147-173, January.
    7. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    8. Paul R. Ehrlich & John Harte, 2018. "Pessimism on the Food Front," Sustainability, MDPI, vol. 10(4), pages 1-5, April.
    9. Timothy McClanahan & Joseph Maina & Mebrahtu Ateweberhan, 2015. "Regional coral responses to climate disturbances and warming is predicted by multivariate stress model and not temperature threshold metrics," Climatic Change, Springer, vol. 131(4), pages 607-620, August.
    10. Alexandre C. Siqueira & Wolfgang Kiessling & David R. Bellwood, 2022. "Fast-growing species shape the evolution of reef corals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Farrah Powell & Arielle Levine & Lucia Ordonez-Gauger, 2022. "Climate adaptation in the market squid fishery: fishermen responses to past variability associated with El Niño Southern Oscillation cycles inform our understanding of adaptive capacity in the face of," Climatic Change, Springer, vol. 173(1), pages 1-21, July.
    12. Mazzone, Antonella, 2020. "Thermal comfort and cooling strategies in the Brazilian Amazon. An assessment of the concept of fuel poverty in tropical climates," Energy Policy, Elsevier, vol. 139(C).
    13. Miñarro, Sara & Leins, Johannes & Acevedo-Trejos, Esteban & Fulton, Elizabeth A. & Reuter, Hauke, 2018. "SEAMANCORE: A spatially explicit simulation model for assisting the local MANagement of COral REefs," Ecological Modelling, Elsevier, vol. 384(C), pages 296-307.
    14. Milne, Russell & Anand, Madhur & Bauch, Chris T., 2023. "Preparing for and managing crown-of-thorns starfish outbreaks on reefs under threat from interacting anthropogenic stressors," Ecological Modelling, Elsevier, vol. 484(C).
    15. Ronaldo B Francini-Filho & Ericka O C Coni & Pedro M Meirelles & Gilberto M Amado-Filho & Fabiano L Thompson & Guilherme H Pereira-Filho & Alex C Bastos & Douglas P Abrantes & Camilo M Ferreira & Fern, 2013. "Dynamics of Coral Reef Benthic Assemblages of the Abrolhos Bank, Eastern Brazil: Inferences on Natural and Anthropogenic Drivers," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    16. Gibbs, Mark T., 2021. "Technology requirements, and social impacts of technology for at-scale coral reef restoration," Technology in Society, Elsevier, vol. 66(C).
    17. Selig, Elizabeth R. & Frazier, Melanie & O'Leary, Jennifer K. & Jupiter, Stacy D. & Halpern, Benjamin S. & Longo, Catherine & Kleisner, Kristin L. & Sivo, Loraini & Ranelletti, Marla, 2015. "Measuring indicators of ocean health for an island nation: The ocean health index for Fiji," Ecosystem Services, Elsevier, vol. 16(C), pages 403-412.
    18. Todd J. Braje & Matthew Lauer, 2020. "A Meaningful Anthropocene?: Golden Spikes, Transitions, Boundary Objects, and Anthropogenic Seascapes," Sustainability, MDPI, vol. 12(16), pages 1-12, August.
    19. Alex S. J. Wyatt & James J. Leichter & Libe Washburn & Li Kui & Peter J. Edmunds & Scott C. Burgess, 2023. "Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Trevor H. Booth & Paul R. Muir, 2020. "Climate change impacts on Australia's eucalypt and coral species: Comparing and sharing knowledge across disciplines," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(5), September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:18:p:6574-:d:411184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.