IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49151-x.html
   My bibliography  Save this article

Perception of motion salience shapes the emergence of collective motions

Author

Listed:
  • Yandong Xiao

    (National University of Defense Technology)

  • Xiaokang Lei

    (Xi’an University of Architecture and Technology)

  • Zhicheng Zheng

    (Northwestern Polytechnical University)

  • Yalun Xiang

    (Northwestern Polytechnical University)

  • Yang-Yu Liu

    (Brigham and Women’s Hospital and Harvard Medical School
    University of Illinois at Urbana-Champaign)

  • Xingguang Peng

    (Northwestern Polytechnical University)

Abstract

Despite the profound implications of self-organization in animal groups for collective behaviors, understanding the fundamental principles and applying them to swarm robotics remains incomplete. Here we propose a heuristic measure of perception of motion salience (MS) to quantify relative motion changes of neighbors from first-person view. Leveraging three large bird-flocking datasets, we explore how this perception of MS relates to the structure of leader-follower (LF) relations, and further perform an individual-level correlation analysis between past perception of MS and future change rate of velocity consensus. We observe prevalence of the positive correlations in real flocks, which demonstrates that individuals will accelerate the convergence of velocity with neighbors who have higher MS. This empirical finding motivates us to introduce the concept of adaptive MS-based (AMS) interaction in swarm model. Finally, we implement AMS in a swarm of ~102 miniature robots. Swarm experiments show the significant advantage of AMS in enhancing self-organization of the swarm for smooth evacuations from confined environments.

Suggested Citation

  • Yandong Xiao & Xiaokang Lei & Zhicheng Zheng & Yalun Xiang & Yang-Yu Liu & Xingguang Peng, 2024. "Perception of motion salience shapes the emergence of collective motions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49151-x
    DOI: 10.1038/s41467-024-49151-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49151-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49151-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dario Floreano & Robert J. Wood, 2015. "Science, technology and the future of small autonomous drones," Nature, Nature, vol. 521(7553), pages 460-466, May.
    2. Manuel Sebastian Mariani & Zhuo-Ming Ren & Jordi Bascompte & Claudio Juan Tessone, 2019. "Nestedness in complex networks: Observation, emergence, and implications," Papers 1905.07593, arXiv.org.
    3. Máté Nagy & Zsuzsa Ákos & Dora Biro & Tamás Vicsek, 2010. "Hierarchical group dynamics in pigeon flocks," Nature, Nature, vol. 464(7290), pages 890-893, April.
    4. Hangjian Ling & Guillam E. Mclvor & Joseph Westley & Kasper Vaart & Richard T. Vaughan & Alex Thornton & Nicholas T. Ouellette, 2019. "Behavioural plasticity and the transition to order in jackdaw flocks," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    5. Serguei Saavedra & Felix Reed-Tsochas & Brian Uzzi, 2009. "A simple model of bipartite cooperation for ecological and organizational networks," Nature, Nature, vol. 457(7228), pages 463-466, January.
    6. Gaurav Gardi & Steven Ceron & Wendong Wang & Kirstin Petersen & Metin Sitti, 2022. "Microrobot collectives with reconfigurable morphologies, behaviors, and functions," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Alexandre & Felipe Jordão Xavier & Thiago Christiano Silva & Francisco A. Rodrigues, 2022. "Nestedness in the Brazilian Financial System," Working Papers Series 566, Central Bank of Brazil, Research Department.
    2. Li Jiang & Luca Giuggioli & Andrea Perna & Ramón Escobedo & Valentin Lecheval & Clément Sire & Zhangang Han & Guy Theraulaz, 2017. "Identifying influential neighbors in animal flocking," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-32, November.
    3. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    4. Liang, Rizhou & Zhang, Jiqiang & Zheng, Guozhong & Chen, Li, 2021. "Social hierarchy promotes the cooperation prevalence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    5. Carlo Bianca & Marco Menale, 2019. "A Convergence Theorem for the Nonequilibrium States in the Discrete Thermostatted Kinetic Theory," Mathematics, MDPI, vol. 7(8), pages 1-13, July.
    6. Gergely Tibély & David Sousa-Rodrigues & Péter Pollner & Gergely Palla, 2016. "Comparing the Hierarchy of Keywords in On-Line News Portals," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    7. Ilona Kulikovskikh & Sergej Prokhorov & Tomislav Lipić & Tarzan Legović & Tomislav Šmuc, 2019. "BioGD: Bio-inspired robust gradient descent," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-19, July.
    8. Rezaei, Sarah & Rosenkranz, Stephanie & Weitzel, Utz & Westbrock, Bastian, 2024. "Social preferences on networks," Journal of Public Economics, Elsevier, vol. 234(C).
    9. Stöcker, Claudia & Bennett, Rohan & Koeva, Mila & Nex, Francesco & Zevenbergen, Jaap, 2022. "Scaling up UAVs for land administration: Towards the plateau of productivity," Land Use Policy, Elsevier, vol. 114(C).
    10. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    11. Zenan Shen & Shaoquan Liu & Wei Zhu & Daoyuan Ren & Qiang Xu & Yu Feng, 2024. "A Review on Key Technologies and Developments of Hydrogen Fuel Cell Multi-Rotor Drones," Energies, MDPI, vol. 17(16), pages 1-36, August.
    12. Roy Harpaz & Minh Nguyet Nguyen & Armin Bahl & Florian Engert, 2021. "Precise visuomotor transformations underlying collective behavior in larval zebrafish," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    13. Victor Boussange & Didier Sornette & Heike Lischke & Loic Pellissier, 2023. "Processes analogous to ecological interactions and dispersal shape the dynamics of economic activities," Papers 2301.09486, arXiv.org.
    14. Li, Qing & Zhang, Lingwei & Jia, Yongnan & Lu, Tianzhao & Chen, Xiaojie, 2022. "Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    15. Kloster, Konstantin & Moeini, Mahdi & Vigo, Daniele & Wendt, Oliver, 2023. "The multiple traveling salesman problem in presence of drone- and robot-supported packet stations," European Journal of Operational Research, Elsevier, vol. 305(2), pages 630-643.
    16. Zhang, Jiu & Jin, Li-Fu & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2022. "Simplified calculations of time correlation functions in non-stationary complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    17. Matteo Bruno & Dario Mazzilli & Aurelio Patelli & Tiziano Squartini & Fabio Saracco, 2023. "Inferring comparative advantage via entropy maximization," Papers 2304.12245, arXiv.org.
    18. Andrea Cavagna & Antonio Culla & Xiao Feng & Irene Giardina & Tomas S. Grigera & Willow Kion-Crosby & Stefania Melillo & Giulia Pisegna & Lorena Postiglione & Pablo Villegas, 2022. "Marginal speed confinement resolves the conflict between correlation and control in collective behaviour," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49151-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.