IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v446y2007i7137d10.1038_nature05678.html
   My bibliography  Save this article

Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems

Author

Listed:
  • Gregory S. Engel

    (University of California, Berkeley
    Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA)

  • Tessa R. Calhoun

    (University of California, Berkeley
    Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA)

  • Elizabeth L. Read

    (University of California, Berkeley
    Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA)

  • Tae-Kyu Ahn

    (University of California, Berkeley
    Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA)

  • Tomáš Mančal

    (University of California, Berkeley
    Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
    Present address: Institute of Physics of Charles University, 12116 Prague 2, Czech Republic.)

  • Yuan-Chung Cheng

    (University of California, Berkeley
    Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA)

  • Robert E. Blankenship

    (Department of Biology,
    Washington University, St Louis, Missouri 63130, USA)

  • Graham R. Fleming

    (University of California, Berkeley
    Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA)

Abstract

Making photosynthesis tick Photosynthesis provides the primary energy source for almost all life on Earth. One of its remarkable features is the efficiency with which energy is transferred within the light harvesting complexes comprising the photosynthetic apparatus. Suspicions that quantum trickery might be involved in the energy transfer processes at the core of photosynthesis are now confirmed by a new spectroscopic study. The study reveals electronic quantum beats characteristic of wavelike energy motion within the bacteriochlorophyll complex from the green sulphur bacterium Chlorobium tepidum. This wavelike characteristic of the energy transfer process can explain the extreme efficiency of photosynthesis, in that vast areas of phase space can be sampled effectively to find the most efficient path for energy transfer.

Suggested Citation

  • Gregory S. Engel & Tessa R. Calhoun & Elizabeth L. Read & Tae-Kyu Ahn & Tomáš Mančal & Yuan-Chung Cheng & Robert E. Blankenship & Graham R. Fleming, 2007. "Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems," Nature, Nature, vol. 446(7137), pages 782-786, April.
  • Handle: RePEc:nat:nature:v:446:y:2007:i:7137:d:10.1038_nature05678
    DOI: 10.1038/nature05678
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature05678
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature05678?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasileios Kapsalis & Grigorios Kyriakopoulos & Miltiadis Zamparas & Athanasios Tolis, 2021. "Investigation of the Photon to Charge Conversion and Its Implication on Photovoltaic Cell Efficient Operation," Energies, MDPI, vol. 14(11), pages 1-16, May.
    2. Ryan Puskar & Chloe Truong & Kyle Swain & Saborni Chowdhury & Ka-Yi Chan & Shan Li & Kai-Wen Cheng & Ting Yu Wang & Yu-Ping Poh & Yuval Mazor & Haijun Liu & Tsui-Fen Chou & Brent L. Nannenga & Po-Lin , 2022. "Molecular asymmetry of a photosynthetic supercomplex from green sulfur bacteria," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Kai Müller & Karl S. Schellhammer & Nico Gräßler & Bipasha Debnath & Fupin Liu & Yulia Krupskaya & Karl Leo & Martin Knupfer & Frank Ortmann, 2023. "Directed exciton transport highways in organic semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Vishal Kumar Jaiswal & Daniel Aranda Ruiz & Vasilis Petropoulos & Piotr Kabaciński & Francesco Montorsi & Lorenzo Uboldi & Simone Ugolini & Shaul Mukamel & Giulio Cerullo & Marco Garavelli & Fabrizio , 2024. "Sub-100-fs energy transfer in coenzyme NADH is a coherent process assisted by a charge-transfer state," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Tobias Eul & Eva Prinz & Michael Hartelt & Benjamin Frisch & Martin Aeschlimann & Benjamin Stadtmüller, 2022. "Coherent response of the electronic system driven by non-interfering laser pulses," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Ringsmuth, Andrew K. & Landsberg, Michael J. & Hankamer, Ben, 2016. "Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 134-163.
    7. Packer, Mike, 2009. "Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy," Energy Policy, Elsevier, vol. 37(9), pages 3428-3437, September.
    8. Qian, Xiaohui & Zeng, Congzhi & Zhou, Nengji, 2021. "Quantum criticality of the Ohmic spin-boson model in a high dense spectrum: Symmetries, quantum fluctuations and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    9. Reda M. El-Shishtawy & Robert Haddon & Saleh Al-Heniti & Bahaaudin Raffah & Sayed Abdel-Khalek & Kamal Berrada & Yas Al-Hadeethi, 2016. "Realistic Quantum Control of Energy Transfer in Photosynthetic Processes," Energies, MDPI, vol. 9(12), pages 1-11, December.
    10. Arif Ullah & Pavlo O. Dral, 2022. "Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Gabor Vattay & Stuart Kauffman & Samuli Niiranen, 2014. "Quantum Biology on the Edge of Quantum Chaos," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    12. Ruidan Zhu & Wenjun Li & Zhanghe Zhen & Jiading Zou & Guohong Liao & Jiayu Wang & Zhuan Wang & Hailong Chen & Song Qin & Yuxiang Weng, 2024. "Quantum phase synchronization via exciton-vibrational energy dissipation sustains long-lived coherence in photosynthetic antennas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Shirmovsky, S.Eh. & Shulga, D.V., 2023. "Quantum relaxation processes in microtubule tryptophan system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    14. Carsten Lippe & Tanita Klas & Jana Bender & Patrick Mischke & Thomas Niederprüm & Herwig Ott, 2021. "Experimental realization of a 3D random hopping model," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    15. Longo, Giuseppe & Montévil, Maël, 2013. "Extended criticality, phase spaces and enablement in biology," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 64-79.
    16. F. Caycedo-Soler & A. Mattioni & J. Lim & T. Renger & S. F. Huelga & M. B. Plenio, 2022. "Exact simulation of pigment-protein complexes unveils vibronic renormalization of electronic parameters in ultrafast spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Arnault, Pablo & Debbasch, Fabrice, 2016. "Landau levels for discrete-time quantum walks in artificial magnetic fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 179-191.
    18. Shekaari, Ashkan & Jafari, Mahmoud, 2020. "Non-equilibrium thermodynamic properties and internal dynamics of 32-residue beta amyloid fibrils," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    19. J.-B. Trebbia & Q. Deplano & P. Tamarat & B. Lounis, 2022. "Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Alharbi, Fahhad H. & Kais, Sabre, 2015. "Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1073-1089.
    21. Di Molfetta, Giuseppe & Brachet, Marc & Debbasch, Fabrice, 2014. "Quantum walks in artificial electric and gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 157-168.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:446:y:2007:i:7137:d:10.1038_nature05678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.