IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v617y2023ics037843712300242x.html
   My bibliography  Save this article

Quantum relaxation processes in microtubule tryptophan system

Author

Listed:
  • Shirmovsky, S.Eh.
  • Shulga, D.V.

Abstract

The paper investigates the mechanism of quantum relaxation in a microtubule tryptophan chain on the basis of the Born–Markov formalism. The tryptophans are considered as a system of interacting electric dipoles. Each dipole is represented as a two-level pseudo-spin system. Decoherence and dissipation processes have been investigated. The tunneling effect impact on quantum relaxation time has been considered. Decoherence time in relation to the environment impact has been obtained. Decoherence time dependence on temperature has been determined.

Suggested Citation

  • Shirmovsky, S.Eh. & Shulga, D.V., 2023. "Quantum relaxation processes in microtubule tryptophan system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
  • Handle: RePEc:eee:phsmap:v:617:y:2023:i:c:s037843712300242x
    DOI: 10.1016/j.physa.2023.128687
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712300242X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hameroff, Stuart & Penrose, Roger, 1996. "Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 40(3), pages 453-480.
    2. Eva Nogales & Sharon G. Wolf & Kenneth H. Downing, 1998. "Erratum: Structure of the αβ tubulin dimer by electron crystallography," Nature, Nature, vol. 393(6681), pages 191-191, May.
    3. Eva Nogales & Sharon G. Wolf & Kenneth H. Downing, 1998. "Structure of the αβ tubulin dimer by electron crystallography," Nature, Nature, vol. 391(6663), pages 199-203, January.
    4. Shirmovsky, S.Eh. & Shulga, D.V., 2021. "Quantum relaxation effects in Microtubules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    5. Chen, Ying & Qiu, Xi-Jun & Dong, Xian-Lin, 2006. "A theory for cell microtubule wall in external field and pseudo-spin wave excitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 463-472.
    6. Elisabetta Collini & Cathy Y. Wong & Krystyna E. Wilk & Paul M. G. Curmi & Paul Brumer & Gregory D. Scholes, 2010. "Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature," Nature, Nature, vol. 463(7281), pages 644-647, February.
    7. Gregory S. Engel & Tessa R. Calhoun & Elizabeth L. Read & Tae-Kyu Ahn & Tomáš Mančal & Yuan-Chung Cheng & Robert E. Blankenship & Graham R. Fleming, 2007. "Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems," Nature, Nature, vol. 446(7137), pages 782-786, April.
    8. Shirmovsky, S.Eh. & Shulga, D.V., 2019. "Microtubules lattice equal-frequency maps: The dynamics of relief changes in dependence on elastic properties, tubulins’ dipole–dipole interaction and viscosity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shirmovsky, S.Eh. & Shulga, D.V., 2021. "Quantum relaxation effects in Microtubules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    2. Vishal Kumar Jaiswal & Daniel Aranda Ruiz & Vasilis Petropoulos & Piotr Kabaciński & Francesco Montorsi & Lorenzo Uboldi & Simone Ugolini & Shaul Mukamel & Giulio Cerullo & Marco Garavelli & Fabrizio , 2024. "Sub-100-fs energy transfer in coenzyme NADH is a coherent process assisted by a charge-transfer state," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Reda M. El-Shishtawy & Robert Haddon & Saleh Al-Heniti & Bahaaudin Raffah & Sayed Abdel-Khalek & Kamal Berrada & Yas Al-Hadeethi, 2016. "Realistic Quantum Control of Energy Transfer in Photosynthetic Processes," Energies, MDPI, vol. 9(12), pages 1-11, December.
    4. Di Molfetta, Giuseppe & Brachet, Marc & Debbasch, Fabrice, 2014. "Quantum walks in artificial electric and gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 157-168.
    5. Gabor Vattay & Stuart Kauffman & Samuli Niiranen, 2014. "Quantum Biology on the Edge of Quantum Chaos," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    6. Arif Ullah & Pavlo O. Dral, 2022. "Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Longo, Giuseppe & Montévil, Maël, 2013. "Extended criticality, phase spaces and enablement in biology," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 64-79.
    8. Tobias Eul & Eva Prinz & Michael Hartelt & Benjamin Frisch & Martin Aeschlimann & Benjamin Stadtmüller, 2022. "Coherent response of the electronic system driven by non-interfering laser pulses," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Arnault, Pablo & Debbasch, Fabrice, 2016. "Landau levels for discrete-time quantum walks in artificial magnetic fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 179-191.
    10. Ringsmuth, Andrew K. & Landsberg, Michael J. & Hankamer, Ben, 2016. "Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 134-163.
    11. J.-B. Trebbia & Q. Deplano & P. Tamarat & B. Lounis, 2022. "Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Packer, Mike, 2009. "Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy," Energy Policy, Elsevier, vol. 37(9), pages 3428-3437, September.
    13. Ishutesh Jain & Mandar M Inamdar & Ranjith Padinhateeri, 2015. "Statistical Mechanics Provides Novel Insights into Microtubule Stability and Mechanism of Shrinkage," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-23, February.
    14. Mika Suojanen, 2019. "Conscious Experience and Quantum Consciousness Theory: Theories, Causation, and Identity," E-LOGOS, Prague University of Economics and Business, vol. 2019(2), pages 14-34.
    15. Carsten Lippe & Tanita Klas & Jana Bender & Patrick Mischke & Thomas Niederprüm & Herwig Ott, 2021. "Experimental realization of a 3D random hopping model," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    16. Tanaka, Shigenori & Umegaki, Toshihito & Nishiyama, Akihiro & Kitoh-Nishioka, Hirotaka, 2022. "Dynamical free energy based model for quantum decision making," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    17. Stephan Peter & Bashar Ibrahim, 2024. "Intuitive Innovation: Unconventional Modeling and Systems Neurology," Mathematics, MDPI, vol. 12(21), pages 1-12, October.
    18. Shekaari, Ashkan & Jafari, Mahmoud, 2020. "Non-equilibrium thermodynamic properties and internal dynamics of 32-residue beta amyloid fibrils," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    19. Alharbi, Fahhad H. & Kais, Sabre, 2015. "Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1073-1089.
    20. Vasileios Kapsalis & Grigorios Kyriakopoulos & Miltiadis Zamparas & Athanasios Tolis, 2021. "Investigation of the Photon to Charge Conversion and Its Implication on Photovoltaic Cell Efficient Operation," Energies, MDPI, vol. 14(11), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:617:y:2023:i:c:s037843712300242x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.