IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v5y2021i12d10.1038_s41562-021-01146-0.html
   My bibliography  Save this article

Understanding, explaining, and utilizing medical artificial intelligence

Author

Listed:
  • Romain Cadario

    (Erasmus University)

  • Chiara Longoni

    (Boston University)

  • Carey K. Morewedge

    (Boston University)

Abstract

Medical artificial intelligence is cost-effective and scalable and often outperforms human providers, yet people are reluctant to use it. We show that resistance to the utilization of medical artificial intelligence is driven by both the subjective difficulty of understanding algorithms (the perception that they are a ‘black box’) and by an illusory subjective understanding of human medical decision-making. In five pre-registered experiments (1–3B: N = 2,699), we find that people exhibit an illusory understanding of human medical decision-making (study 1). This leads people to believe they better understand decisions made by human than algorithmic healthcare providers (studies 2A,B), which makes them more reluctant to utilize algorithmic than human providers (studies 3A,B). Fortunately, brief interventions that increase subjective understanding of algorithmic decision processes increase willingness to utilize algorithmic healthcare providers (studies 3A,B). A sixth study on Google Ads for an algorithmic skin cancer detection app finds that the effectiveness of such interventions generalizes to field settings (study 4: N = 14,013).

Suggested Citation

  • Romain Cadario & Chiara Longoni & Carey K. Morewedge, 2021. "Understanding, explaining, and utilizing medical artificial intelligence," Nature Human Behaviour, Nature, vol. 5(12), pages 1636-1642, December.
  • Handle: RePEc:nat:nathum:v:5:y:2021:i:12:d:10.1038_s41562-021-01146-0
    DOI: 10.1038/s41562-021-01146-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-021-01146-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-021-01146-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Correction: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 546(7660), pages 686-686, June.
    2. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Changdong, 2024. "How consumers respond to service failures caused by algorithmic mistakes: The role of algorithmic interpretability," Journal of Business Research, Elsevier, vol. 176(C).
    2. Anne-Marie Nussberger & Lan Luo & L. Elisa Celis & M. J. Crockett, 2022. "Public attitudes value interpretability but prioritize accuracy in Artificial Intelligence," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Hermann, Erik & Puntoni, Stefano, 2024. "Artificial intelligence and consumer behavior: From predictive to generative AI," Journal of Business Research, Elsevier, vol. 180(C).
    4. Merdin-Uygur, Ezgi & Ozturkcan, Selcen, 2023. "Consumers and service robots: Power relationships amid COVID-19 pandemic," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    5. Roshni Raveendhran & Nathanael J. Fast, 2024. "When and why consumers prefer human-free behavior tracking products," Marketing Letters, Springer, vol. 35(3), pages 395-408, September.
    6. Wang, Cuicui & Li, Yiyang & Fu, Weizhong & Jin, Jia, 2023. "Whether to trust chatbots: Applying the event-related approach to understand consumers’ emotional experiences in interactions with chatbots in e-commerce," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    7. Erik Hermann & Gizem Yalcin Williams & Stefano Puntoni, 2024. "Deploying artificial intelligence in services to AID vulnerable consumers," Journal of the Academy of Marketing Science, Springer, vol. 52(5), pages 1431-1451, October.
    8. Huang, Xiaozhi & Wu, Xitong & Cao, Xin & Wu, Jifei, 2023. "The effect of medical artificial intelligence innovation locus on consumer adoption of new products," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    9. Hai Lan & Xiaofei Tang & Yong Ye & Huiqin Zhang, 2024. "Abstract or concrete? The effects of language style and service context on continuous usage intention for AI voice assistants," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    10. Yang, Yikai & Zheng, Jiehui & Yu, Yining & Qiu, Yiling & Wang, Lei, 2024. "The role of recommendation sources and attribute framing in online product recommendations," Journal of Business Research, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    3. Freddy Gabbay & Rotem Lev Aharoni & Ori Schweitzer, 2022. "Deep Neural Network Memory Performance and Throughput Modeling and Simulation Framework," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    4. Jungyoon Kim & Jihye Lim, 2021. "A Deep Neural Network-Based Method for Prediction of Dementia Using Big Data," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    5. Gang Yu & Kai Sun & Chao Xu & Xing-Hua Shi & Chong Wu & Ting Xie & Run-Qi Meng & Xiang-He Meng & Kuan-Song Wang & Hong-Mei Xiao & Hong-Wen Deng, 2021. "Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
    7. Claus Zippel & Sabine Bohnet-Joschko, 2021. "Rise of Clinical Studies in the Field of Machine Learning: A Review of Data Registered in ClinicalTrials.gov," IJERPH, MDPI, vol. 18(10), pages 1-14, May.
    8. Dario Sipari & Betsy D. M. Chaparro-Rico & Daniele Cafolla, 2022. "SANE (Easy Gait Analysis System): Towards an AI-Assisted Automatic Gait-Analysis," IJERPH, MDPI, vol. 19(16), pages 1-27, August.
    9. Jamil Ahmad & Abdul Khader Jilani Saudagar & Khalid Mahmood Malik & Waseem Ahmad & Muhammad Badruddin Khan & Mozaherul Hoque Abul Hasanat & Abdullah AlTameem & Mohammed AlKhathami & Muhammad Sajjad, 2022. "Disease Progression Detection via Deep Sequence Learning of Successive Radiographic Scans," IJERPH, MDPI, vol. 19(1), pages 1-16, January.
    10. Rasheed Omobolaji Alabi & Alhadi Almangush & Mohammed Elmusrati & Ilmo Leivo & Antti Mäkitie, 2022. "Measuring the Usability and Quality of Explanations of a Machine Learning Web-Based Tool for Oral Tongue Cancer Prognostication," IJERPH, MDPI, vol. 19(14), pages 1-13, July.
    11. Andreas Fügener & Jörn Grahl & Alok Gupta & Wolfgang Ketter, 2022. "Cognitive Challenges in Human–Artificial Intelligence Collaboration: Investigating the Path Toward Productive Delegation," Information Systems Research, INFORMS, vol. 33(2), pages 678-696, June.
    12. Vidhya V. & Anjan Gudigar & U. Raghavendra & Ajay Hegde & Girish R. Menon & Filippo Molinari & Edward J. Ciaccio & U. Rajendra Acharya, 2021. "Automated Detection and Screening of Traumatic Brain Injury (TBI) Using Computed Tomography Images: A Comprehensive Review and Future Perspectives," IJERPH, MDPI, vol. 18(12), pages 1-29, June.
    13. Pujin Wang & Jianzhuang Xiao & Ken’ichi Kawaguchi & Lichen Wang, 2022. "Automatic Ceiling Damage Detection in Large-Span Structures Based on Computer Vision and Deep Learning," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    14. Xu Gong & Keqin Guan & Qiyang Chen, 2022. "The role of textual analysis in oil futures price forecasting based on machine learning approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1987-2017, October.
    15. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    16. Kai Feng & Han Hong & Ke Tang & Jingyuan Wang, 2023. "Statistical Tests for Replacing Human Decision Makers with Algorithms," Papers 2306.11689, arXiv.org.
    17. He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    18. Oded Rotem & Tamar Schwartz & Ron Maor & Yishay Tauber & Maya Tsarfati Shapiro & Marcos Meseguer & Daniella Gilboa & Daniel S. Seidman & Assaf Zaritsky, 2024. "Visual interpretability of image-based classification models by generative latent space disentanglement applied to in vitro fertilization," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    19. Zhiming Cui & Yu Fang & Lanzhuju Mei & Bojun Zhang & Bo Yu & Jiameng Liu & Caiwen Jiang & Yuhang Sun & Lei Ma & Jiawei Huang & Yang Liu & Yue Zhao & Chunfeng Lian & Zhongxiang Ding & Min Zhu & Dinggan, 2022. "A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Chowdhury, Emon Kalyan, 2019. "Use of Artificial Intelligence in Stock Trading," MPRA Paper 118175, University Library of Munich, Germany, revised 18 Apr 2019.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:5:y:2021:i:12:d:10.1038_s41562-021-01146-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.