IDEAS home Printed from https://ideas.repec.org/a/eee/ijrema/v41y2024i3p496-512.html
   My bibliography  Save this article

Acceptability lies in the eye of the beholder: Self-other biases in GenAI collaborations

Author

Listed:
  • Celiktutan, Begum
  • Klesse, Anne-Kathrin
  • Tuk, Mirjam A.

Abstract

Since the release of ChatGPT, heated discussions have focused on the acceptable uses of generative artificial intelligence (GenAI) in education, science, and business practices. A salient question in these debates pertains to perceptions of the extent to which creators contribute to the co-produced output. As the current research establishes, the answer to this question depends on the evaluation target. Nine studies (seven preregistered, total N = 4498) document that people evaluate their own contributions to co-produced outputs with ChatGPT as higher than those of others. This systematic self–other difference stems from differential inferences regarding types of GenAI usage behavior: People think that they predominantly use GenAI for inspiration, but others use it to outsource work. These self–other differences in turn have direct ramifications for GenAI acceptability perceptions, such that usage is considered more acceptable for the self than for others. The authors discuss the implications of these findings for science, education, and marketing.

Suggested Citation

  • Celiktutan, Begum & Klesse, Anne-Kathrin & Tuk, Mirjam A., 2024. "Acceptability lies in the eye of the beholder: Self-other biases in GenAI collaborations," International Journal of Research in Marketing, Elsevier, vol. 41(3), pages 496-512.
  • Handle: RePEc:eee:ijrema:v:41:y:2024:i:3:p:496-512
    DOI: 10.1016/j.ijresmar.2024.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167811624000442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijresmar.2024.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anouk S Bergner & Christian Hildebrand & Gerald Häubl & J Jeffrey Inman & Richard J Lutz & Ellie J Kyung, 2023. "Machine Talk: How Verbal Embodiment in Conversational AI Shapes Consumer–Brand Relationships," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 50(4), pages 742-764.
    2. Matthew Hutson, 2023. "Rules to keep AI in check: nations carve different paths for tech regulation," Nature, Nature, vol. 620(7973), pages 260-263, August.
    3. Stuti Agarwal & Julian De Freitas & Anya Ragnhildstveit & Carey K. Morewedge, 2024. "Acceptance of Automated Vehicles Is Lower for Self than Others," Journal of the Association for Consumer Research, University of Chicago Press, vol. 9(3), pages 269-281.
    4. Noah Castelo & Johannes Boegershausen & Christian Hildebrand & Alexander P Henkel & June Cotte & Klaus Wertenbroch, 2023. "Understanding and Improving Consumer Reactions to Service Bots," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 50(4), pages 848-863.
    5. Eva A. M. van Dis & Johan Bollen & Willem Zuidema & Robert van Rooij & Claudi L. Bockting, 2023. "ChatGPT: five priorities for research," Nature, Nature, vol. 614(7947), pages 224-226, February.
    6. Peres, Renana & Schreier, Martin & Schweidel, David & Sorescu, Alina, 2023. "On ChatGPT and beyond: How generative artificial intelligence may affect research, teaching, and practice," International Journal of Research in Marketing, Elsevier, vol. 40(2), pages 269-275.
    7. Yue Zhang & Mirjam A. Tuk & Anne-Kathrin Klesse, 2024. "Giving AI a Human Touch: Highlighting Human Input Increases the Perceived Helpfulness of Advice from AI Coaches," Journal of the Association for Consumer Research, University of Chicago Press, vol. 9(3), pages 344-356.
    8. Thomas Davenport & Abhijit Guha & Dhruv Grewal & Timna Bressgott, 2020. "How artificial intelligence will change the future of marketing," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 24-42, January.
    9. Evan Polman & Ignazio Ziano & Kaiyang Wu & Anneleen Van Kerckhove, 2022. "Consumers Believe That Products Work Better for Others [Age-Related Decline in Executive Function Predicts Better Advice-Giving in Uncomfortable Social Contexts]," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 49(1), pages 132-153.
    10. Romain Cadario & Chiara Longoni & Carey K. Morewedge, 2021. "Understanding, explaining, and utilizing medical artificial intelligence," Nature Human Behaviour, Nature, vol. 5(12), pages 1636-1642, December.
    11. Elanor F. Williams & Mary Steffel, 2014. "Double Standards in the Use of Enhancing Products by Self and Others," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 41(2), pages 506-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Acar, Oguz A., 2024. "Commentary: Reimagining marketing education in the age of generative AI," International Journal of Research in Marketing, Elsevier, vol. 41(3), pages 489-495.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hermann, Erik & Puntoni, Stefano, 2024. "Artificial intelligence and consumer behavior: From predictive to generative AI," Journal of Business Research, Elsevier, vol. 180(C).
    2. Erik Hermann & Gizem Yalcin Williams & Stefano Puntoni, 2024. "Deploying artificial intelligence in services to AID vulnerable consumers," Journal of the Academy of Marketing Science, Springer, vol. 52(5), pages 1431-1451, October.
    3. Kirshner, Samuel N., 2024. "GPT and CLT: The impact of ChatGPT's level of abstraction on consumer recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
    4. Wenkai Zhou & Chi Zhang & Linwan Wu & Meghana Shashidhar, 2023. "ChatGPT and marketing: Analyzing public discourse in early Twitter posts," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 693-706, December.
    5. Herhausen, Dennis & Bernritter, Stefan F. & Ngai, Eric W.T. & Kumar, Ajay & Delen, Dursun, 2024. "Machine learning in marketing: Recent progress and future research directions," Journal of Business Research, Elsevier, vol. 170(C).
    6. Darima Fotheringham & Michael A. Wiles, 2023. "The effect of implementing chatbot customer service on stock returns: an event study analysis," Journal of the Academy of Marketing Science, Springer, vol. 51(4), pages 802-822, July.
    7. Chen, Changdong, 2024. "How consumers respond to service failures caused by algorithmic mistakes: The role of algorithmic interpretability," Journal of Business Research, Elsevier, vol. 176(C).
    8. Robertson, Jeandri & Ferreira, Caitlin & Botha, Elsamari & Oosthuizen, Kim, 2024. "Game changers: A generative AI prompt protocol to enhance human-AI knowledge co-construction," Business Horizons, Elsevier, vol. 67(5), pages 499-510.
    9. Ghio, Alessandro, 2024. "Democratizing academic research with Artificial Intelligence: The misleading case of language," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 98(C).
    10. Leah Warfield Smith & Randall Lee Rose & Alex R. Zablah & Heath McCullough & Mohammad “Mike” Saljoughian, 2023. "Examining post-purchase consumer responses to product automation," Journal of the Academy of Marketing Science, Springer, vol. 51(3), pages 530-550, May.
    11. Latinovic, Zoran & Chatterjee, Sharmila C., 2022. "Achieving the promise of AI and ML in delivering economic and relational customer value in B2B," Journal of Business Research, Elsevier, vol. 144(C), pages 966-974.
    12. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    13. Shengliang Zhang & Chaoying Huang & Xiaodong Li & Ai Ren, 2022. "Understanding Impacts of Service Robots with the Revised Gap Model," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    14. Teck Ming Tan & Saila Saraniemi, 2023. "Trust in blockchain-enabled exchanges: Future directions in blockchain marketing," Journal of the Academy of Marketing Science, Springer, vol. 51(4), pages 914-939, July.
    15. Arpan Kumar Kar & P. S. Varsha & Shivakami Rajan, 2023. "Unravelling the Impact of Generative Artificial Intelligence (GAI) in Industrial Applications: A Review of Scientific and Grey Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 659-689, December.
    16. Cambra-Fierro, Jesús & Polo-Redondo, Yolanda & Trifu, Andreea, 2021. "Short-term and long-term effects of touchpoints on customer perceptions," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    17. Ayat Sami ODEIBAT, 2021. "The Effect Of Technology Evolution On The Future Of Jobs," Network Intelligence Studies, Romanian Foundation for Business Intelligence, Editorial Department, issue 17, pages 57-67, June.
    18. Poushneh, Atieh, 2021. "Impact of auditory sense on trust and brand affect through auditory social interaction and control," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).
    19. Yao, Nengzhi(Chris) & Bai, Junhong & Yu, Zihao & Guo, Qiaozhe, 2025. "Does AI orientation facilitate operational efficiency? A contingent strategic orientation perspective," Journal of Business Research, Elsevier, vol. 186(C).
    20. Mandler, Timo & Sezen, Burcu & Chen, Jieke & Özsomer, Ayşegül, 2021. "Performance consequences of marketing standardization/adaptation: A systematic literature review and future research agenda," Journal of Business Research, Elsevier, vol. 125(C), pages 416-435.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijrema:v:41:y:2024:i:3:p:496-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-research-in-marketing/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.