IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v8y2023i7d10.1038_s41560-023-01272-1.html
   My bibliography  Save this article

Roll-to-roll prelithiation of lithium-ion battery anodes by transfer printing

Author

Listed:
  • Cheng Yang

    (Tsinghua University
    Tsinghua University)

  • Huachun Ma

    (Tsinghua University)

  • Ruichuan Yuan

    (Tsinghua University)

  • Kuangyu Wang

    (Tsinghua University)

  • Kai Liu

    (North China Electric Power University)

  • Yuanzheng Long

    (Tsinghua University)

  • Fei Xu

    (Do-Fluoride New Energy Technology Co. Ltd.)

  • Lei Li

    (National Engineering Research Center of Electric Vehicles, Beijing Institute of Technology)

  • Haitian Zhang

    (Tsinghua University)

  • Yingchuan Zhang

    (Tsinghua University)

  • Xiaoyan Li

    (Tsinghua University)

  • Hui Wu

    (Tsinghua University)

Abstract

Prelithiation can boost the performance of lithium-ion batteries (LIBs). A cost-effective prelithiation strategy with high quality and high industrial compatibility is urgently required. Herein we developed a roll-to-roll electrodeposition and transfer-printing system for continuous prelithiation of LIB anodes. By roll-to-roll calendering, pre-manufactured anodes could be fully transfer-printed onto electrodeposited lithium metal. The interface separation and adhesion during transfer printing were related to interfacial shear and compressive stress, respectively. With the facile transfer-printing prelithiation, high initial Coulombic efficiencies of 99.99% and 99.05% were achieved in graphite and silicon/carbon composite electrode half cells, respectively. The initial Coulombic efficiencies and energy densities in full cells were observed to be significantly improved with the prelithiated electrodes. The roll-to-roll transfer printing provides a high-performance, controllable, scalable and industry-adaptable prelithiation in LIBs.

Suggested Citation

  • Cheng Yang & Huachun Ma & Ruichuan Yuan & Kuangyu Wang & Kai Liu & Yuanzheng Long & Fei Xu & Lei Li & Haitian Zhang & Yingchuan Zhang & Xiaoyan Li & Hui Wu, 2023. "Roll-to-roll prelithiation of lithium-ion battery anodes by transfer printing," Nature Energy, Nature, vol. 8(7), pages 703-713, July.
  • Handle: RePEc:nat:natene:v:8:y:2023:i:7:d:10.1038_s41560-023-01272-1
    DOI: 10.1038/s41560-023-01272-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-023-01272-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-023-01272-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Schmuch & Ralf Wagner & Gerhard Hörpel & Tobias Placke & Martin Winter, 2018. "Performance and cost of materials for lithium-based rechargeable automotive batteries," Nature Energy, Nature, vol. 3(4), pages 267-278, April.
    2. Yongming Sun & Hyun-Wook Lee & Zhi Wei Seh & Nian Liu & Jie Sun & Yuzhang Li & Yi Cui, 2016. "High-capacity battery cathode prelithiation to offset initial lithium loss," Nature Energy, Nature, vol. 1(1), pages 1-7, January.
    3. Hao Chen & Yufei Yang & David T. Boyle & You Kyeong Jeong & Rong Xu & Luize Scalco Vasconcelos & Zhuojun Huang & Hansen Wang & Hongxia Wang & Wenxiao Huang & Huiqiao Li & Jiangyan Wang & Hanke Gu & Ry, 2021. "Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries," Nature Energy, Nature, vol. 6(8), pages 790-798, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Junpeng & Sun, Jingna & Huang, Huagui & Ji, Ce & Yan, Meng & Yuan, Zhenge, 2024. "Deformation and fracture mechanisms in the calendering process of lithium-ion battery electrodes," Applied Energy, Elsevier, vol. 373(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dae-Seon Hong & Yeon-Ji Choi & Chang-Su Jin & Kyoung-Hee Shin & Woo-Jin Song & Sun-Hwa Yeon, 2023. "Enhanced Cycle Performance of NiCo 2 O 4 /CNTs Composites in Lithium-Air Batteries," Energies, MDPI, vol. 17(1), pages 1-14, December.
    2. Held, Marcel & Tuchschmid, Martin & Zennegg, Markus & Figi, Renato & Schreiner, Claudia & Mellert, Lars Derek & Welte, Urs & Kompatscher, Michael & Hermann, Michael & Nachef, Léa, 2022. "Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    4. Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Green, William H., 2020. "Transition to electric vehicles in China: Implications for private motorization rate and battery market," Energy Policy, Elsevier, vol. 144(C).
    5. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    6. Arjun K. Thapa & Abhinav C. Nouduri & Mohammed Mohiuddin & Hari Prasad Reddy Kannapu & Lihui Bai & Hui Wang & Mahendra K. Sunkara, 2024. "Recycling and Reuse of Mn-Based Spinel Electrode from Spent Lithium-Ion Batteries," Energies, MDPI, vol. 17(16), pages 1-13, August.
    7. Jiaqi Cao & Yuansheng Shi & Aosong Gao & Guangyuan Du & Muhtar Dilxat & Yongfei Zhang & Mohang Cai & Guoyu Qian & Xueyi Lu & Fangyan Xie & Yang Sun & Xia Lu, 2024. "Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    9. Qingyuan Li & Jen-Hung Fang & Wenyuan Li & Xingbo Liu, 2022. "Novel Materials and Advanced Characterization for Energy Storage and Conversion," Energies, MDPI, vol. 15(20), pages 1-3, October.
    10. Jacek Paś, 2023. "Issues Related to Power Supply Reliability in Integrated Electronic Security Systems Operated in Buildings and Vast Areas," Energies, MDPI, vol. 16(8), pages 1-22, April.
    11. Duffner, Fabian & Mauler, Lukas & Wentker, Marc & Leker, Jens & Winter, Martin, 2021. "Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs," International Journal of Production Economics, Elsevier, vol. 232(C).
    12. Xiaozhe Zhang & Pan Xu & Jianing Duan & Xiaodong Lin & Juanjuan Sun & Wenjie Shi & Hewei Xu & Wenjie Dou & Qingyi Zheng & Ruming Yuan & Jiande Wang & Yan Zhang & Shanshan Yu & Zehan Chen & Mingsen Zhe, 2024. "A dicarbonate solvent electrolyte for high performance 5 V-Class Lithium-based batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Jung-Hui Kim & Ju-Myung Kim & Seok-Kyu Cho & Nag-Young Kim & Sang-Young Lee, 2022. "Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Daria Surovtseva & Enda Crossin & Robert Pell & Laurence Stamford, 2022. "Toward a life cycle inventory for graphite production," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 964-979, June.
    15. Wang, Fujin & Wu, Ziqian & Zhao, Zhibin & Zhai, Zhi & Wang, Chenxi & Chen, Xuefeng, 2024. "Physical knowledge guided state of health estimation of lithium-ion battery with limited segment data," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    16. Lukas Lanz & Bessie Noll & Tobias S. Schmidt & Bjarne Steffen, 2022. "Comparing the levelized cost of electric vehicle charging options in Europe," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Christian Thies & Karsten Kieckhäfer & Thomas S. Spengler, 2021. "Activity analysis based modeling of global supply chains for sustainability assessment," Journal of Business Economics, Springer, vol. 91(2), pages 215-252, March.
    18. Yang, Chen & Li, Peng & Yu, Jia & Zhao, Li-Da & Kong, Long, 2020. "Approaching energy-dense and cost-effective lithium–sulfur batteries: From materials chemistry and price considerations," Energy, Elsevier, vol. 201(C).
    19. Yuzhao Liu & Xiangyu Meng & Zhiyu Wang & Jieshan Qiu, 2022. "Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Jaeho Choi & Woo Jin Byun & DongHwan Kang & Jung Kyoo Lee, 2021. "Porous Manganese Oxide Networks as High-Capacity and High-Rate Anodes for Lithium-Ion Batteries," Energies, MDPI, vol. 14(5), pages 1-11, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:8:y:2023:i:7:d:10.1038_s41560-023-01272-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.