IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6522-d1236869.html
   My bibliography  Save this article

Reaction Temperature Manipulation as a Process Intensification Approach for CO 2 Absorption

Author

Listed:
  • Jorge Federico Gabitto

    (Department of Chemical Engineering, Prairie View A&M University, Prairie View, TX 77446, USA)

  • Costas Tsouris

    (Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
    School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA)

Abstract

Reactor temperature manipulation to increase product yields of chemical reactions is a known technique used in many industrial processes. In the case of exothermic chemical reactions, the well-known Le Chatelier’s principle predicts that a decrease in temperature will displace the chemical reaction toward the formation of products by increasing the value of the equilibrium constant. The reverse is true for endothermic reactions. Reactor temperature manipulation in an industrial system, however, affects the values of many variables, including physical properties, transport parameters, reaction kinetic parameters, etc. In the case of reactive absorption, some variables change with increasing temperatures due to solute absorption, while others change in such a way that the solute absorption rate decreases. For example, temperature drop increases product formation for exothermic reactions but reduces the value of transport parameters, leading to decreasing interfacial concentrations and absorption rates. Therefore, temperature manipulation strategies must be designed carefully to achieve the process goals. In this work, we theoretically study the use of temperature as a tool to increase CO 2 absorption by solvents in a semi-batch reactor. A computer code has been developed and validated using reported experimental data. Calculated results demonstrate an increase in absorbed CO 2 of more than 28% with respect to the highest temperature used. Despite high agitation and high gas flow rate, the system is mass transfer controlled at short times, becoming kinetically controlled as time increases. An operating strategy to decrease cooling energy costs is also proposed. This study reveals that reactor temperature manipulation can be an effective process to improve CO 2 absorption by solvents in two-phase semi-batch reactors.

Suggested Citation

  • Jorge Federico Gabitto & Costas Tsouris, 2023. "Reaction Temperature Manipulation as a Process Intensification Approach for CO 2 Absorption," Energies, MDPI, vol. 16(18), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6522-:d:1236869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6522/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Flavien M. Brethomé & Neil J. Williams & Charles A. Seipp & Michelle K. Kidder & Radu Custelcean, 2018. "Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power," Nature Energy, Nature, vol. 3(7), pages 553-559, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kate Dooley & Ellycia Harrould‐Kolieb & Anita Talberg, 2021. "Carbon‐dioxide Removal and Biodiversity: A Threat Identification Framework," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 34-44, April.
    2. Yaowei Huang & Da Xu & Shuai Deng & Meng Lin, 2024. "A hybrid electro-thermochemical device for methane production from the air," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
    4. Zhang, Chen & Zhang, Xinqi & Su, Tingyu & Zhang, Yiheng & Wang, Liwei & Zhu, Xuancan, 2023. "Modification schemes of efficient sorbents for trace CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Choe, Changgwon & Cheon, Seunghyun & Kim, Heehyang & Lim, Hankwon, 2023. "Mitigating climate change for negative CO2 emission via syngas methanation: Techno-economic and life-cycle assessments of renewable methane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    6. Vadim Fetisov & Adam M. Gonopolsky & Maria Yu. Zemenkova & Schipachev Andrey & Hadi Davardoost & Amir H. Mohammadi & Masoud Riazi, 2023. "On the Integration of CO 2 Capture Technologies for an Oil Refinery," Energies, MDPI, vol. 16(2), pages 1-19, January.
    7. Shijian Jin & Min Wu & Yan Jing & Roy G. Gordon & Michael J. Aziz, 2022. "Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Zhu, Xuancan & Ge, Tianshu & Yang, Fan & Wang, Ruzhu, 2021. "Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Steffen Fahr & Julian Powell & Alice Favero & Anthony J. Giarrusso & Ryan P. Lively & Matthew J. Realff, 2022. "Assessing the physical potential capacity of direct air capture with integrated supply of low‐carbon energy sources," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 170-188, February.
    10. ElSayed, Mai & Aghahosseini, Arman & Caldera, Upeksha & Breyer, Christian, 2023. "Analysing the techno-economic impact of e-fuels and e-chemicals production for exports and carbon dioxide removal on the energy system of sunbelt countries – Case of Egypt," Applied Energy, Elsevier, vol. 343(C).
    11. Yurou Celine Xiao & Siyu Sonia Sun & Yong Zhao & Rui Kai Miao & Mengyang Fan & Geonhui Lee & Yuanjun Chen & Christine M. Gabardo & Yan Yu & Chenyue Qiu & Zunmin Guo & Xinyue Wang & Panagiotis Papangel, 2024. "Reactive capture of CO2 via amino acid," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Abishek Kasturi & Jorge F. Gabitto & Radu Custelcean & Costas Tsouris, 2021. "A Process Intensification Approach for CO 2 Absorption Using Amino Acid Solutions and a Guanidine Compound," Energies, MDPI, vol. 14(18), pages 1-15, September.
    13. Paulsen, M.M. & Petersen, S.B. & Lozano, E.M. & Pedersen, T.H., 2024. "Techno-economic study of integrated high-temperature direct air capture with hydrogen-based calcination and Fischer–Tropsch synthesis for jet fuel production," Applied Energy, Elsevier, vol. 369(C).
    14. Yongqiang Wang & Longbing Qu & Hui Ding & Paul Webley & Gang Kevin Li, 2024. "Distributed direct air capture of carbon dioxide by synergistic water harvesting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6522-:d:1236869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.