IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36574-1.html
   My bibliography  Save this article

Life cycle net energy assessment of sustainable H2 production and hydrogenation of chemicals in a coupled photoelectrochemical device

Author

Listed:
  • Xinyi Zhang

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
    Department of Chemistry)

  • Michael Schwarze

    (Department of Chemistry)

  • Reinhard Schomäcker

    (Department of Chemistry)

  • Roel Krol

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
    Department of Chemistry)

  • Fatwa F. Abdi

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

Abstract

Green hydrogen has been identified as a critical enabler in the global transition to sustainable energy and decarbonized society, but it is still not economically competitive compared to fossil-fuel-based hydrogen. To overcome this limitation, we propose to couple photoelectrochemical (PEC) water splitting with the hydrogenation of chemicals. Here, we evaluate the potential of co-producing hydrogen and methyl succinic acid (MSA) by coupling the hydrogenation of itaconic acid (IA) inside a PEC water splitting device. A negative net energy balance is predicted to be achieved when the device generates only hydrogen, but energy breakeven can already be achieved when a small ratio (~2%) of the generated hydrogen is used in situ for IA-to-MSA conversion. Moreover, the simulated coupled device produces MSA with much lower cumulative energy demand than conventional hydrogenation. Overall, the coupled hydrogenation concept offers an attractive approach to increase the viability of PEC water splitting while at the same time decarbonizing valuable chemical production.

Suggested Citation

  • Xinyi Zhang & Michael Schwarze & Reinhard Schomäcker & Roel Krol & Fatwa F. Abdi, 2023. "Life cycle net energy assessment of sustainable H2 production and hydrogenation of chemicals in a coupled photoelectrochemical device," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36574-1
    DOI: 10.1038/s41467-023-36574-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36574-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36574-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroshi Nishiyama & Taro Yamada & Mamiko Nakabayashi & Yoshiki Maehara & Masaharu Yamaguchi & Yasuko Kuromiya & Yoshie Nagatsuma & Hiromasa Tokudome & Seiji Akiyama & Tomoaki Watanabe & Ryoichi Narush, 2021. "Photocatalytic solar hydrogen production from water on a 100-m2 scale," Nature, Nature, vol. 598(7880), pages 304-307, October.
    2. Jieyang Jia & Linsey C. Seitz & Jesse D. Benck & Yijie Huo & Yusi Chen & Jia Wei Desmond Ng & Taner Bilir & James S. Harris & Thomas F. Jaramillo, 2016. "Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Haonan & Goh, Hui Hwang & Zhang, Dongdong & Sun, Hui & Dai, Wei & Kurniawan, Tonni Agustiono & Dennis Wong, M.L. & Teo, Kenneth Tze Kin & Goh, Kai Chen, 2024. "Eco-Energetical analysis of circular economy and community-based virtual power plants (CE-cVPP): A systems engineering-engaged life cycle assessment (SE-LCA) method for sustainable renewable energy de," Applied Energy, Elsevier, vol. 365(C).
    2. Keisuke Obata & Michael Schwarze & Tabea A. Thiel & Xinyi Zhang & Babu Radhakrishnan & Ibbi Y. Ahmet & Roel Krol & Reinhard Schomäcker & Fatwa F. Abdi, 2023. "Solar-driven upgrading of biomass by coupled hydrogenation using in situ (photo)electrochemically generated H2," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    2. Qitao Chen & Baodong Mao & Yanhong Liu & Yunjie Zhou & Hui Huang & Song Wang & Longhua Li & Wei-Cheng Yan & Weidong Shi & Zhenhui Kang, 2024. "Designing 2D carbon dot nanoreactors for alcohol oxidation coupled with hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Ma, Ben-Chi & Lin, Hua & Zhu, Yizhou & Zeng, Zilong & Geng, Jiafeng & Jing, Dengwei, 2022. "A new Concentrated Photovoltaic Thermal-Hydrogen system with photocatalyst suspension as optical liquid filter," Renewable Energy, Elsevier, vol. 194(C), pages 1221-1232.
    4. Hamdani, I.R. & Bhaskarwar, A.N., 2021. "Recent progress in material selection and device designs for photoelectrochemical water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Yannan Liu & Cheng-Hao Liu & Tushar Debnath & Yong Wang & Darius Pohl & Lucas V. Besteiro & Debora Motta Meira & Shengyun Huang & Fan Yang & Bernd Rellinghaus & Mohamed Chaker & Dmytro F. Perepichka &, 2023. "Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Takuya Suguro & Fuminao Kishimoto & Nobuko Kariya & Tsuyoshi Fukui & Mamiko Nakabayashi & Naoya Shibata & Tsuyoshi Takata & Kazunari Domen & Kazuhiro Takanabe, 2022. "A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Wei-Wei Fang & Gui-Yu Yang & Zi-Hui Fan & Zi-Chao Chen & Xun-Liang Hu & Zhen Zhan & Irshad Hussain & Yang Lu & Tao He & Bi-En Tan, 2023. "Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Yuyan Huang & Minhui Shen & Huijie Yan & Yingge He & Jianqiao Xu & Fang Zhu & Xin Yang & Yu-Xin Ye & Gangfeng Ouyang, 2024. "Achieving a solar-to-chemical efficiency of 3.6% in ambient conditions by inhibiting interlayer charges transport," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Keisuke Obata & Michael Schwarze & Tabea A. Thiel & Xinyi Zhang & Babu Radhakrishnan & Ibbi Y. Ahmet & Roel Krol & Reinhard Schomäcker & Fatwa F. Abdi, 2023. "Solar-driven upgrading of biomass by coupled hydrogenation using in situ (photo)electrochemically generated H2," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    11. Camilo A. Mesa & Michael Sachs & Ernest Pastor & Nicolas Gauriot & Alice J. Merryweather & Miguel A. Gomez-Gonzalez & Konstantin Ignatyev & Sixto Giménez & Akshay Rao & James R. Durrant & Raj Pandya, 2024. "Correlating activities and defects in (photo)electrocatalysts using in-situ multi-modal microscopic imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Das, Jagat & Sahu, Partha Pratim, 2021. "Water splitting with screw pitched cylindrical electrode and Fe(OH)2 catalyst under 1.4 V," Renewable Energy, Elsevier, vol. 165(P1), pages 525-532.
    13. Jining Guo & Yuecheng Zhang & Ali Zavabeti & Kaifei Chen & Yalou Guo & Guoping Hu & Xiaolei Fan & Gang Kevin Li, 2022. "Hydrogen production from the air," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Jiang, Jing & Chen, Mei & Luo, Yang & Xu, Ying & Ai, Lunhong, 2022. "One stone, two birds: Multifunctional hierarchical iron sulfide nanosheet arrays enabling self-powered solar thermoelectric water electrolysis," Renewable Energy, Elsevier, vol. 195(C), pages 230-237.
    15. Corzo Santamaría, Teresa & Martin-Bujack, Karin & Portela, Jose & Sáenz-Diez, Rocio, 2022. "Early market efficiency testing among hydrogen players," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 723-742.
    16. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Ramakrishnan, Shanmugam & Delpisheh, Mostafa & Convery, Caillean & Niblett, Daniel & Vinothkannan, Mohanraj & Mamlouk, Mohamed, 2024. "Offshore green hydrogen production from wind energy: Critical review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    18. Xiangdong Zhu & Litao Lin & Mingyue Pang & Chao Jia & Longlong Xia & Guosheng Shi & Shicheng Zhang & Yuanda Lu & Liming Sun & Fengbo Yu & Jie Gao & Zhelin He & Xuan Wu & Aodi Li & Liang Wang & Meiling, 2024. "Continuous and low-carbon production of biomass flash graphene," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    20. Wei Li & Wen Duan & Guocheng Liao & Fanfan Gao & Yusen Wang & Rongxia Cui & Jincai Zhao & Chuanyi Wang, 2024. "0.68% of solar-to-hydrogen efficiency and high photostability of organic-inorganic membrane catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36574-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.