IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57160-7.html
   My bibliography  Save this article

Interdecadal modulation of Ningaloo Niño/Niña strength in the Southeast Indian Ocean by the Atlantic Multidecadal Oscillation

Author

Listed:
  • Jiaqing Xue

    (Nanjing University of Information Science and Technology
    Nanjing University of Information Science and Technology
    Nanjing University of Information Science and Technology)

  • Wenjun Zhang

    (Nanjing University of Information Science and Technology
    Nanjing University of Information Science and Technology)

  • Yutong Zhang

    (Nanjing University of Information Science and Technology
    Nanjing University of Information Science and Technology)

  • Jing-Jia Luo

    (Nanjing University of Information Science and Technology
    Nanjing University of Information Science and Technology)

  • Hualong Zhu

    (Nanjing University of Information Science and Technology
    Nanjing University of Information Science and Technology)

  • Cheng Sun

    (Beijing Normal University)

  • Toshio Yamagata

    (Japan Agency for Marine-Earth Science and Technology)

Abstract

The Southeast Indian Ocean is a global hotspot for marine heatwaves. In that region, marine heatwaves/cold-spells are known as Ningaloo Niño/Niña events, and have substantial impacts on regional climate anomalies and unique marine ecosystems. However, the strength of Ningaloo Niño/Niña events is nonstationary and varies considerably at multidecadal timescales. Here we find that the interdecadal fluctuations in Ningaloo Niño/Niña strength are modulated by the Atlantic Multidecadal Oscillation (AMO), with strengthened (weakened) Ningaloo Niño/Niña corresponding to a positive (negative) AMO phase. During the positive AMO phase, the Atlantic warm sea surface temperature (SST) anomalies drive a series of climate mean-state changes in the Indo-Pacific region through tropics-wide teleconnections, including SST cooling over the central Pacific and SST warming in the tropical eastern Indian Ocean. Those mean-state changes tend to enhance El Niño-Southern Oscillation (ENSO)-related atmospheric and oceanic teleconnections to the Southeast Indian Ocean, and increase local Indian Ocean ocean–atmosphere coupling, promoting the Ningaloo Niño/Niña growth. Our findings highlight the critical role of the remote influence of AMO in understanding the Southeast Indian Ocean marine heatwaves/cold-spells and associated climatic and socioeconomic impacts.

Suggested Citation

  • Jiaqing Xue & Wenjun Zhang & Yutong Zhang & Jing-Jia Luo & Hualong Zhu & Cheng Sun & Toshio Yamagata, 2025. "Interdecadal modulation of Ningaloo Niño/Niña strength in the Southeast Indian Ocean by the Atlantic Multidecadal Oscillation," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57160-7
    DOI: 10.1038/s41467-025-57160-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57160-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57160-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Zinke & A. Rountrey & M. Feng & S.-P. Xie & D. Dissard & K. Rankenburg & J.M. Lough & M.T. McCulloch, 2014. "Corals record long-term Leeuwin current variability including Ningaloo Niño/Niña since 1795," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    2. Neil J. Holbrook & Hillary A. Scannell & Alexander Gupta & Jessica A. Benthuysen & Ming Feng & Eric C. J. Oliver & Lisa V. Alexander & Michael T. Burrows & Markus G. Donat & Alistair J. Hobday & Pippa, 2019. "A global assessment of marine heatwaves and their drivers," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    3. Thomas L. Frölicher & Erich M. Fischer & Nicolas Gruber, 2018. "Marine heatwaves under global warming," Nature, Nature, vol. 560(7718), pages 360-364, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Mignot & Karina Schuckmann & Peter Landschützer & Florent Gasparin & Simon Gennip & Coralie Perruche & Julien Lamouroux & Tristan Amm, 2022. "Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Ying Zhang & Yan Du & Ming Feng & Alistair J. Hobday, 2023. "Vertical structures of marine heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Kathryn E. Smith & Margot Aubin & Michael T. Burrows & Karen Filbee-Dexter & Alistair J. Hobday & Neil J. Holbrook & Nathan G. King & Pippa J. Moore & Alex Sen Gupta & Mads Thomsen & Thomas Wernberg &, 2024. "Global impacts of marine heatwaves on coastal foundation species," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Xiuwen Guo & Yang Gao & Shaoqing Zhang & Wenju Cai & Deliang Chen & L. Ruby Leung & Jakob Zscheischler & Luanne Thompson & Kristen Davis & Binglin Qu & Huiwang Gao & Lixin Wu, 2024. "Intensification of future subsurface marine heatwaves in an eddy-resolving model," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Ce Bian & Zhao Jing & Hong Wang & Lixin Wu & Zhaohui Chen & Bolan Gan & Haiyuan Yang, 2023. "Oceanic mesoscale eddies as crucial drivers of global marine heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Changyu Li & Jianping Huang & Xiaoyue Liu & Lei Ding & Yongli He & Yongkun Xie, 2024. "The ocean losing its breath under the heatwaves," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Friedrich A. Burger & Jens Terhaar & Thomas L. Frölicher, 2022. "Compound marine heatwaves and ocean acidity extremes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Zhang, Jing & Lei, Xiaohui & Chen, Bin & Song, Yongyu, 2019. "Analysis of blue water footprint of hydropower considering allocation coefficients for multi-purpose reservoirs," Energy, Elsevier, vol. 188(C).
    9. Frank A. La Sorte & Alison Johnston & Toby R. Ault, 2021. "Global trends in the frequency and duration of temperature extremes," Climatic Change, Springer, vol. 166(1), pages 1-14, May.
    10. Marysia Szymkowiak & Andrew Steinkruger, 2024. "Climate change attribution, appraisal, and adaptive capacity for fishermen in the Gulf of Alaska," Climatic Change, Springer, vol. 177(6), pages 1-17, June.
    11. Shannon G. Klein & Cassandra Roch & Carlos M. Duarte, 2024. "Systematic review of the uncertainty of coral reef futures under climate change," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Lisandro Benedetti-Cecchi & Amanda E. Bates & Giovanni Strona & Fabio Bulleri & Barbara Horta e Costa & Graham J. Edgar & Bernat Hereu & Dan C. Reed & Rick D. Stuart-Smith & Neville S. Barrett & David, 2024. "Marine protected areas promote stability of reef fish communities under climate warming," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Yuewen Ding & Pengfei Lin & Hailong Liu & Bo Wu & Yuanlong Li & Lin Chen & Lei Zhang & Aixue Hu & Yiming Wang & Yiyun Yao & Bowen Zhao & Wenrong Bai & Weiqing Han, 2024. "Emergence of decadal linkage between Western Australian coast and Western–central tropical Pacific," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Jia Zheng & Ning Guo & Yuxiang Huang & Xiang Guo & Andreas Wagner, 2024. "High temperature delays and low temperature accelerates evolution of a new protein phenotype," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Sauterey, Boris & Gland, Guillaume Le & Cermeño, Pedro & Aumont, Olivier & Lévy, Marina & Vallina, Sergio M., 2023. "Phytoplankton adaptive resilience to climate change collapses in case of extreme events – A modeling study," Ecological Modelling, Elsevier, vol. 483(C).
    16. Tongtong Xu & Matthew Newman & Antonietta Capotondi & Samantha Stevenson & Emanuele Di Lorenzo & Michael A. Alexander, 2022. "An increase in marine heatwaves without significant changes in surface ocean temperature variability," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Jian Shi & Hao Huang & Alexey V. Fedorov & Neil J. Holbrook & Yu Zhang & Ruiqiang Ding & Yongyue Luo & Shengpeng Wang & Jiajie Chen & Xi Hu & Qinyu Liu & Fei Huang & Xiaopei Lin, 2024. "Northeast Pacific warm blobs sustained via extratropical atmospheric teleconnections," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Patricia M. Clay & Jennifer Howard & D. Shallin Busch & Lisa L. Colburn & Amber Himes-Cornell & Steven S. Rumrill & Stephani G. Zador & Roger B. Griffis, 2020. "Ocean and coastal indicators: understanding and coping with climate change at the land-sea interface," Climatic Change, Springer, vol. 163(4), pages 1773-1793, December.
    19. Mi-Kyung Sung & Soon-Il An & Jongsoo Shin & Jae-Heung Park & Young-Min Yang & Hyo-Jeong Kim & Minhee Chang, 2023. "Ocean fronts as decadal thermostats modulating continental warming hiatus," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Alex S. J. Wyatt & James J. Leichter & Libe Washburn & Li Kui & Peter J. Edmunds & Scott C. Burgess, 2023. "Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57160-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.