IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47032-x.html
   My bibliography  Save this article

Northeast Pacific warm blobs sustained via extratropical atmospheric teleconnections

Author

Listed:
  • Jian Shi

    (Ocean University of China
    Ocean University of China
    Laoshan Laboratory)

  • Hao Huang

    (Ocean University of China
    Ocean University of China)

  • Alexey V. Fedorov

    (Yale University
    Sorbonne University)

  • Neil J. Holbrook

    (University of Tasmania
    University of Tasmania)

  • Yu Zhang

    (Ocean University of China
    Laoshan Laboratory)

  • Ruiqiang Ding

    (Beijing Normal University)

  • Yongyue Luo

    (Ocean University of China
    Ocean University of China)

  • Shengpeng Wang

    (Laoshan Laboratory)

  • Jiajie Chen

    (Ocean University of China
    Ocean University of China)

  • Xi Hu

    (Ocean University of China
    Ocean University of China)

  • Qinyu Liu

    (Ocean University of China)

  • Fei Huang

    (Ocean University of China
    Ocean University of China
    Laoshan Laboratory)

  • Xiaopei Lin

    (Ocean University of China
    Ocean University of China
    Laoshan Laboratory)

Abstract

Large-scale marine heatwaves in the Northeast Pacific (NEP), identified here and previously as ‘warm blobs’, have devastating impacts on regional ecosystems. An anomalous atmospheric ridge over the NEP is known to be crucial for maintaining these warm blobs, also causing abnormally cold temperatures over North America during the cold season. Previous studies linked this ridge to teleconnections from tropical sea surface temperature anomalies. However, it was unclear whether teleconnections from the extratropics could also contribute to the ridge. Here we show that planetary wave trains, triggered by increased rainfall and latent heat release over the Mediterranean Sea accompanied by decreased rainfall over the North Atlantic, can transport wave energy to the NEP, guided by the westerly jet, and induce a quasi-barotropic ridge there. Our findings provide insights into extratropical teleconnections sustaining the NEP ridge, offering a source of potential predictability for the warm blobs and temperature fluctuations over North America.

Suggested Citation

  • Jian Shi & Hao Huang & Alexey V. Fedorov & Neil J. Holbrook & Yu Zhang & Ruiqiang Ding & Yongyue Luo & Shengpeng Wang & Jiajie Chen & Xi Hu & Qinyu Liu & Fei Huang & Xiaopei Lin, 2024. "Northeast Pacific warm blobs sustained via extratropical atmospheric teleconnections," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47032-x
    DOI: 10.1038/s41467-024-47032-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47032-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47032-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shineng Hu & Alexey V. Fedorov, 2020. "Indian Ocean warming as a driver of the North Atlantic warming hole," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Shineng Hu & Alexey V. Fedorov, 2019. "Indian Ocean warming can strengthen the Atlantic meridional overturning circulation," Nature Climate Change, Nature, vol. 9(10), pages 747-751, October.
    3. Neil J. Holbrook & Hillary A. Scannell & Alexander Gupta & Jessica A. Benthuysen & Ming Feng & Eric C. J. Oliver & Lisa V. Alexander & Michael T. Burrows & Markus G. Donat & Alistair J. Hobday & Pippa, 2019. "A global assessment of marine heatwaves and their drivers," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiqun Tian & Shineng Hu & Clara Deser, 2023. "Critical role of biomass burning aerosols in enhanced historical Indian Ocean warming," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Young-Min Yang & Jae-Heung Park & Soon-Il An & Sang-Wook Yeh & Zhiwei Zhu & Fei Liu & Juan Li & June-Yi Lee & Bin Wang, 2022. "Increased Indian Ocean-North Atlantic Ocean warming chain under greenhouse warming," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Sahil Sharma & Kyung-Ja Ha & Ryohei Yamaguchi & Keith B. Rodgers & Axel Timmermann & Eui-Seok Chung, 2023. "Future Indian Ocean warming patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Alexandre Mignot & Karina Schuckmann & Peter Landschützer & Florent Gasparin & Simon Gennip & Coralie Perruche & Julien Lamouroux & Tristan Amm, 2022. "Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Patricia M. Clay & Jennifer Howard & D. Shallin Busch & Lisa L. Colburn & Amber Himes-Cornell & Steven S. Rumrill & Stephani G. Zador & Roger B. Griffis, 2020. "Ocean and coastal indicators: understanding and coping with climate change at the land-sea interface," Climatic Change, Springer, vol. 163(4), pages 1773-1793, December.
    6. Alex S. J. Wyatt & James J. Leichter & Libe Washburn & Li Kui & Peter J. Edmunds & Scott C. Burgess, 2023. "Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Ce Bian & Zhao Jing & Hong Wang & Lixin Wu & Zhaohui Chen & Bolan Gan & Haiyuan Yang, 2023. "Oceanic mesoscale eddies as crucial drivers of global marine heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Ying Zhang & Yan Du & Ming Feng & Alistair J. Hobday, 2023. "Vertical structures of marine heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Dillon J. Amaya & Michael G. Jacox & Michael A. Alexander & James D. Scott & Clara Deser & Antonietta Capotondi & Adam S. Phillips, 2023. "Bottom marine heatwaves along the continental shelves of North America," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Christopher C. Chapman & Didier P. Monselesan & James S. Risbey & Ming Feng & Bernadette M. Sloyan, 2022. "A large-scale view of marine heatwaves revealed by archetype analysis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Changyu Li & Jianping Huang & Xiaoyue Liu & Lei Ding & Yongli He & Yongkun Xie, 2024. "The ocean losing its breath under the heatwaves," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Lei Zhang & Weiqing Han, 2021. "Indian Ocean Dipole leads to Atlantic Niño," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Kathryn E. Smith & Margot Aubin & Michael T. Burrows & Karen Filbee-Dexter & Alistair J. Hobday & Neil J. Holbrook & Nathan G. King & Pippa J. Moore & Alex Sen Gupta & Mads Thomsen & Thomas Wernberg &, 2024. "Global impacts of marine heatwaves on coastal foundation species," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Friedrich A. Burger & Jens Terhaar & Thomas L. Frölicher, 2022. "Compound marine heatwaves and ocean acidity extremes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Heather Welch & Matthew S. Savoca & Stephanie Brodie & Michael G. Jacox & Barbara A. Muhling & Thomas A. Clay & Megan A. Cimino & Scott R. Benson & Barbara A. Block & Melinda G. Conners & Daniel P. Co, 2023. "Impacts of marine heatwaves on top predator distributions are variable but predictable," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Neitzel, Leonie & Gehrig, Edeltraud, 2022. "Influence of advection in box models describing thermohaline circulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 101-112.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47032-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.