IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57141-w.html
   My bibliography  Save this article

Droplet-supported liquid-liquid lateral phase separation as a step to floating protein heterostructures

Author

Listed:
  • Haixu Chen

    (Harbin Institute of Technology
    Harbin Institute of Technology)

  • Zhengbin Han

    (Harbin Institute of Technology)

  • Shengliang Wang

    (Harbin Institute of Technology)

  • Mei Zhu

    (Harbin Institute of Technology)

  • Lei Wang

    (Harbin Institute of Technology)

  • Youping Lin

    (Harbin Institute of Technology)

  • Xiaoliang Wang

    (Harbin Institute of Technology)

  • Yide Zhang

    (Harbin Institute of Technology)

  • Wei Wang

    (Harbin Institute of Technology
    Harbin Institute of Technology)

  • Mei Li

    (University of Bristol)

  • Xiaoman Liu

    (Harbin Institute of Technology)

  • Stephen Mann

    (University of Bristol)

  • Xin Huang

    (Harbin Institute of Technology)

Abstract

Liquid-liquid phase separation plays an important role in many natural and technological processes. Herein, we implement lateral microphase separation at the surface of oil micro-droplets suspended in water to prepare a range of discrete floating protein/polymer continuous two-dimensional (2D) heterostructures with variable interfacial domain structures and dynamics. We show that gel-like domains of bovine serum albumin (BSA) co-exist with fluid-like polyvinyl alcohol (PVA) regions at the oil droplet surface to produce floating heterostructures comprising a 2D phase-separated protein mesh or an array of discrete mobile protein rafts depending on the conditions employed. Enzymes are embedded in the discontinuous BSA domains to produce droplet-supported microphase-separated 2D reaction scaffolds that can be tuned for interfacial catalysis. Taken together, our work has general implications for the structural and functional augmentation of oil droplet interfaces and contributes to the surface engineering and functionality of droplet-based micro-reactors.

Suggested Citation

  • Haixu Chen & Zhengbin Han & Shengliang Wang & Mei Zhu & Lei Wang & Youping Lin & Xiaoliang Wang & Yide Zhang & Wei Wang & Mei Li & Xiaoman Liu & Stephen Mann & Xin Huang, 2025. "Droplet-supported liquid-liquid lateral phase separation as a step to floating protein heterostructures," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57141-w
    DOI: 10.1038/s41467-025-57141-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57141-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57141-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhao Zhao & Jinglin Fu & Soma Dhakal & Alexander Johnson-Buck & Minghui Liu & Ting Zhang & Neal W. Woodbury & Yan Liu & Nils G. Walter & Hao Yan, 2016. "Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    2. Zhijie Yang & Jingjing Wei & Yaroslav I. Sobolev & Bartosz A. Grzybowski, 2018. "Systems of mechanized and reactive droplets powered by multi-responsive surfactants," Nature, Nature, vol. 553(7688), pages 313-318, January.
    3. Zhijun Xu & Shengliang Wang & Chunyu Zhao & Shangsong Li & Xiaoman Liu & Lei Wang & Mei Li & Xin Huang & Stephen Mann, 2020. "Photosynthetic hydrogen production by droplet-based microbial micro-reactors under aerobic conditions," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Shaobin Zhang & Claudia Contini & James W. Hindley & Guido Bolognesi & Yuval Elani & Oscar Ces, 2021. "Engineering motile aqueous phase-separated droplets via liposome stabilisation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Xin Huang & Mei Li & David C. Green & David S. Williams & Avinash J. Patil & Stephen Mann, 2013. "Interfacial assembly of protein–polymer nano-conjugates into stimulus-responsive biomimetic protocells," Nature Communications, Nature, vol. 4(1), pages 1-9, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Yuhao Weng & Huihong Chen & Xiaoqian Chen & Huilin Yang & Chia-Hung Chen & Hongliang Tan, 2022. "Adenosine triphosphate-activated prodrug system for on-demand bacterial inactivation and wound disinfection," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Vishal Maingi & Zhao Zhang & Chris Thachuk & Namita Sarraf & Edwin R. Chapman & Paul W. K. Rothemund, 2023. "Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Enzo Bomal & Paul Grandgeorge & Reuben J. Yeo & Nicolas Candau & Pedro M. Reis & Holger Frauenrath, 2022. "Spontaneous formation of a self-healing carbon nanoskin at the liquid–liquid interface," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Zhijun Xu & Jiarui Qi & Shengliang Wang & Xiaoman Liu & Mei Li & Stephen Mann & Xin Huang, 2023. "Algal cell bionics as a step towards photosynthesis-independent hydrogen production," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Machineni, Lakshmi & Deepanraj, B. & Chew, Kit Wayne & Rao, A. Gangagni, 2023. "Biohydrogen production from lignocellulosic feedstock: Abiotic and biotic methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Jing Mu & Chunxiao Li & Yu Shi & Guoyong Liu & Jianhua Zou & Dong-Yang Zhang & Chao Jiang & Xiuli Wang & Liangcan He & Peng Huang & Yuxin Yin & Xiaoyuan Chen, 2022. "Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Songyang Liu & Yanwen Zhang & Xiaoxiao He & Mei Li & Jin Huang & Xiaohai Yang & Kemin Wang & Stephen Mann & Jianbo Liu, 2022. "Signal processing and generation of bioactive nitric oxide in a model prototissue," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Shuyi Sun & Shuailong Li & Weixiao Feng & Jiaqiu Luo & Thomas P. Russell & Shaowei Shi, 2024. "Reconfigurable droplet networks," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Youngsun Kim & Hongru Ding & Yuebing Zheng, 2022. "Investigating water/oil interfaces with opto-thermophoresis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Adrian Zambrano & Giorgio Fracasso & Mengfei Gao & Martina Ugrinic & Dishi Wang & Dietmar Appelhans & Andrew deMello & T-Y. Dora Tang, 2022. "Programmable synthetic cell networks regulated by tuneable reaction rates," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Tomoya Maruyama & Jing Gong & Masahiro Takinoue, 2024. "Temporally controlled multistep division of DNA droplets for dynamic artificial cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Hua Wu & Xuanlin Du & Xiaohui Meng & Dong Qiu & Yan Qiao, 2021. "A three-tiered colloidosomal microreactor for continuous flow catalysis," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57141-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.