IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57107-y.html
   My bibliography  Save this article

Advanced multi-modal mass spectrometry imaging reveals functional differences of placental villous compartments at microscale resolution

Author

Listed:
  • Marija Veličković

    (Pacific Northwest National Laboratory)

  • Leena Kadam

    (Oregon Health & Science University)

  • Joonhoon Kim

    (Pacific Northwest National Laboratory)

  • Kevin J. Zemaitis

    (Pacific Northwest National Laboratory)

  • Dušan Veličković

    (Pacific Northwest National Laboratory)

  • Yuqian Gao

    (Pacific Northwest National Laboratory)

  • Ruonan Wu

    (Pacific Northwest National Laboratory)

  • Thomas L. Fillmore

    (Pacific Northwest National Laboratory)

  • Daniel Orton

    (Pacific Northwest National Laboratory)

  • Sarah M. Williams

    (Pacific Northwest National Laboratory)

  • Matthew E. Monroe

    (Pacific Northwest National Laboratory)

  • Ronald J. Moore

    (Pacific Northwest National Laboratory)

  • Paul D. Piehowski

    (Pacific Northwest National Laboratory)

  • Lisa M. Bramer

    (Pacific Northwest National Laboratory)

  • Leslie Myatt

    (Oregon Health & Science University)

  • Kristin E. Burnum-Johnson

    (Pacific Northwest National Laboratory)

Abstract

The placenta is a complex and heterogeneous organ that links the mother and fetus, playing a crucial role in nourishing and protecting the fetus throughout pregnancy. Integrative spatial multi-omics approaches can provide a systems-level understanding of molecular changes underlying the mechanisms leading to the histological variations of the placenta during healthy pregnancy and pregnancy complications. Herein, we advance our metabolome-informed proteome imaging (MIPI) workflow to include lipidomic imaging, while also expanding the molecular coverage of metabolomic imaging by incorporating on-tissue chemical derivatization (OTCD). The improved MIPI workflow advances biomedical investigations by leveraging state-of-the-art molecular imaging technologies. Lipidome imaging identifies molecular differences between two morphologically distinct compartments of a placental villous functional unit, syncytiotrophoblast (STB) and villous core. Next, our advanced metabolome imaging maps villous functional units with enriched metabolomic activities related to steroid and lipid metabolism, outlining distinct molecular distributions across morphologically different villous compartments. Complementary proteome imaging on these villous functional units reveals a plethora of fatty acid- and steroid-related enzymes uniquely distributed in STB and villous core compartments. Integration across our advanced MIPI imaging modalities enables the reconstruction of active biological pathways of molecular synthesis and maternal-fetal signaling across morphologically distinct placental villous compartments with micrometer-scale resolution.

Suggested Citation

  • Marija Veličković & Leena Kadam & Joonhoon Kim & Kevin J. Zemaitis & Dušan Veličković & Yuqian Gao & Ruonan Wu & Thomas L. Fillmore & Daniel Orton & Sarah M. Williams & Matthew E. Monroe & Ronald J. M, 2025. "Advanced multi-modal mass spectrometry imaging reveals functional differences of placental villous compartments at microscale resolution," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57107-y
    DOI: 10.1038/s41467-025-57107-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57107-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57107-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shirley Greenbaum & Inna Averbukh & Erin Soon & Gabrielle Rizzuto & Alex Baranski & Noah F. Greenwald & Adam Kagel & Marc Bosse & Eleni G. Jaswa & Zumana Khair & Shirley Kwok & Shiri Warshawsky & Hade, 2023. "A spatially resolved timeline of the human maternal–fetal interface," Nature, Nature, vol. 619(7970), pages 595-605, July.
    2. Paul D. Piehowski & Ying Zhu & Lisa M. Bramer & Kelly G. Stratton & Rui Zhao & Daniel J. Orton & Ronald J. Moore & Jia Yuan & Hugh D. Mitchell & Yuqian Gao & Bobbie-Jo M. Webb-Robertson & Sudhansu K. , 2020. "Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Roser Vento-Tormo & Mirjana Efremova & Rachel A. Botting & Margherita Y. Turco & Miquel Vento-Tormo & Kerstin B. Meyer & Jong-Eun Park & Emily Stephenson & Krzysztof Polański & Angela Goncalves & Lucy, 2018. "Single-cell reconstruction of the early maternal–fetal interface in humans," Nature, Nature, vol. 563(7731), pages 347-353, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reta Birhanu Kitata & Marija Velickovic & Zhangyang Xu & Rui Zhao & David Scholten & Rosalie K. Chu & Daniel J. Orton & William B. Chrisler & Tong Zhang & Jeremy V. Mathews & Benjamin M. Bumgarner & D, 2025. "Robust collection and processing for label-free single voxel proteomics," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    2. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Yunhao Bai & Bokai Zhu & John-Paul Oliveria & Bryan J. Cannon & Dorien Feyaerts & Marc Bosse & Kausalia Vijayaragavan & Noah F. Greenwald & Darci Phillips & Christian M. Schürch & Samuel M. Naik & Edw, 2023. "Expanded vacuum-stable gels for multiplexed high-resolution spatial histopathology," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Qian-Yue Zhang & Xiao-Ping Ye & Zheng Zhou & Chen-Fang Zhu & Rui Li & Ya Fang & Rui-Jia Zhang & Lu Li & Wei Liu & Zheng Wang & Shi-Yang Song & Sang-Yu Lu & Shuang-Xia Zhao & Jian-Nan Lin & Huai-Dong S, 2022. "Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in Hashimoto’s thyroiditis," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Du Wenqiang & Ashkan Novin & Yamin Liu & Junaid Afzal & Yasir Suhail & Shaofei Liu & Nicole R. Gavin & Jennifer R. Jorgensen & Christopher M. Morosky & Reinaldo Figueroa & Tannin A. Schmidt & Melinda , 2024. "Scar matrix drives Piezo1 mediated stromal inflammation leading to placenta accreta spectrum," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Xi Li & Alfonso Poire & Kang Jin Jeong & Dong Zhang & Tugba Yildiran Ozmen & Gang Chen & Chaoyang Sun & Gordon B. Mills, 2024. "C5aR1 inhibition reprograms tumor associated macrophages and reverses PARP inhibitor resistance in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Meng Liu & Mengjun Ji & Jianghong Cheng & Yingzhe Li & Yingpu Tian & Hui Zhao & Yang Wang & Sijing Zhu & Leilei Zhang & Xinmei Xu & Gen-Sheng Feng & Xiaohuan Liang & Haili Bao & Yedong Tang & Shuangbo, 2023. "Deciphering a critical role of uterine epithelial SHP2 in parturition initiation at single cell resolution," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Adele M. Alchahin & Shenglin Mei & Ioanna Tsea & Taghreed Hirz & Youmna Kfoury & Douglas Dahl & Chin-Lee Wu & Alexander O. Subtelny & Shulin Wu & David T. Scadden & John H. Shin & Philip J. Saylor & D, 2022. "A transcriptional metastatic signature predicts survival in clear cell renal cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Zhongwei Xin & Mingjie Lin & Zhixing Hao & Di Chen & Yongyuan Chen & Xiaoke Chen & Xia Xu & Jinfan Li & Dang Wu & Ying Chai & Pin Wu, 2022. "The immune landscape of human thymic epithelial tumors," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Yanfen Xu & Xi Wang & Yuan Li & Yiheng Mao & Yiran Su & Yize Mao & Yun Yang & Weina Gao & Changying Fu & Wendong Chen & Xueting Ye & Fuchao Liang & Panzhu Bai & Ying Sun & Shengping Li & Ruilian Xu & , 2024. "Multimodal single cell-resolved spatial proteomics reveal pancreatic tumor heterogeneity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Md Tauhidul Islam & Lei Xing, 2023. "Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Simon Davis & Connor Scott & Janina Oetjen & Philip D. Charles & Benedikt M. Kessler & Olaf Ansorge & Roman Fischer, 2023. "Deep topographic proteomics of a human brain tumour," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Qiaoqi Sui & Xi Zhang & Chao Chen & Jinghua Tang & Jiehai Yu & Weihao Li & Kai Han & Wu Jiang & Leen Liao & Lingheng Kong & Yuan Li & Zhenlin Hou & Chi Zhou & Chenzhi Zhang & Linjie Zhang & Binyi Xiao, 2022. "Inflammation promotes resistance to immune checkpoint inhibitors in high microsatellite instability colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Valdemaras Petrosius & Pedro Aragon-Fernandez & Nil Üresin & Gergo Kovacs & Teeradon Phlairaharn & Benjamin Furtwängler & Jeff Op De Beeck & Sarah L. Skovbakke & Steffen Goletz & Simon Francis Thomsen, 2023. "Exploration of cell state heterogeneity using single-cell proteomics through sensitivity-tailored data-independent acquisition," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Clara Alsinet & Maria Nascimento Primo & Valentina Lorenzi & Erica Bello & Iva Kelava & Carla P. Jones & Roser Vilarrasa-Blasi & Carmen Sancho-Serra & Andrew J. Knights & Jong-Eun Park & Beata S. Wysp, 2022. "Robust temporal map of human in vitro myelopoiesis using single-cell genomics," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Jake R. Thomas & Anna Appios & Emily F. Calderbank & Nagisa Yoshida & Xiaohui Zhao & Russell S. Hamilton & Ashley Moffett & Andrew Sharkey & Elisa Laurenti & Courtney W. Hanna & Naomi McGovern, 2023. "Primitive haematopoiesis in the human placenta gives rise to macrophages with epigenetically silenced HLA-DR," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Lu Li & Cuiji Sun & Yaoting Sun & Zhen Dong & Runxin Wu & Xiaoting Sun & Hanbin Zhang & Wenhao Jiang & Yan Zhou & Xufeng Cen & Shang Cai & Hongguang Xia & Yi Zhu & Tiannan Guo & Kiryl D. Piatkevich, 2022. "Spatially resolved proteomics via tissue expansion," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Ann-Christin Gnirck & Marie-Sophie Philipp & Alex Waterhölter & Malte Wunderlich & Nikhat Shaikh & Virginia Adamiak & Lena Henneken & Tobias Kautz & Tingting Xiong & Daniela Klaus & Pascal Tomczyk & M, 2023. "Mucosal-associated invariant T cells contribute to suppression of inflammatory myeloid cells in immune-mediated kidney disease," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Taghreed Hirz & Shenglin Mei & Hirak Sarkar & Youmna Kfoury & Shulin Wu & Bronte M. Verhoeven & Alexander O. Subtelny & Dimitar V. Zlatev & Matthew W. Wszolek & Keyan Salari & Evan Murray & Fei Chen &, 2023. "Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Eric Buren & David Azzara & Javier Rangel-Moreno & Maria de la Luz Garcia-Hernandez & Shawn P. Murphy & Ethan D. Cohen & Ethan Lewis & Xihong Lin & Hae-Ryung Park, 2024. "Single-cell RNA sequencing reveals placental response under environmental stress," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57107-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.