IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-13858-z.html
   My bibliography  Save this article

Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution

Author

Listed:
  • Paul D. Piehowski

    (Pacific Northwest National Laboratory)

  • Ying Zhu

    (Pacific Northwest National Laboratory)

  • Lisa M. Bramer

    (Pacific Northwest National Laboratory)

  • Kelly G. Stratton

    (Pacific Northwest National Laboratory)

  • Rui Zhao

    (Pacific Northwest National Laboratory)

  • Daniel J. Orton

    (Pacific Northwest National Laboratory)

  • Ronald J. Moore

    (Pacific Northwest National Laboratory)

  • Jia Yuan

    (Cincinnati Children’s Hospital Medical Center)

  • Hugh D. Mitchell

    (Pacific Northwest National Laboratory)

  • Yuqian Gao

    (Pacific Northwest National Laboratory)

  • Bobbie-Jo M. Webb-Robertson

    (Pacific Northwest National Laboratory)

  • Sudhansu K. Dey

    (Cincinnati Children’s Hospital Medical Center)

  • Ryan T. Kelly

    (Pacific Northwest National Laboratory
    Brigham Young University)

  • Kristin E. Burnum-Johnson

    (Pacific Northwest National Laboratory)

Abstract

Biological tissues exhibit complex spatial heterogeneity that directs the functions of multicellular organisms. Quantifying protein expression is essential for elucidating processes within complex biological assemblies. Imaging mass spectrometry (IMS) is a powerful emerging tool for mapping the spatial distribution of metabolites and lipids across tissue surfaces, but technical challenges have limited the application of IMS to the analysis of proteomes. Methods for probing the spatial distribution of the proteome have generally relied on the use of labels and/or antibodies, which limits multiplexing and requires a priori knowledge of protein targets. Past efforts to make spatially resolved proteome measurements across tissues have had limited spatial resolution and proteome coverage and have relied on manual workflows. Here, we demonstrate an automated approach to imaging that utilizes label-free nanoproteomics to analyze tissue voxels, generating quantitative cell-type-specific images for >2000 proteins with 100-µm spatial resolution across mouse uterine tissue sections preparing for blastocyst implantation.

Suggested Citation

  • Paul D. Piehowski & Ying Zhu & Lisa M. Bramer & Kelly G. Stratton & Rui Zhao & Daniel J. Orton & Ronald J. Moore & Jia Yuan & Hugh D. Mitchell & Yuqian Gao & Bobbie-Jo M. Webb-Robertson & Sudhansu K. , 2020. "Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13858-z
    DOI: 10.1038/s41467-019-13858-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13858-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13858-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Ma & Shihan Huo & Ming Zhang & Shuo Qian & Xiaoyu Zhu & Jie Pu & Sailee Rasam & Chao Xue & Shichen Shen & Bo An & Jianmin Wang & Jun Qu, 2022. "In-depth mapping of protein localizations in whole tissue by micro-scaffold assisted spatial proteomics (MASP)," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Simon Davis & Connor Scott & Janina Oetjen & Philip D. Charles & Benedikt M. Kessler & Olaf Ansorge & Roman Fischer, 2023. "Deep topographic proteomics of a human brain tumour," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Yanfen Xu & Xi Wang & Yuan Li & Yiheng Mao & Yiran Su & Yize Mao & Yun Yang & Weina Gao & Changying Fu & Wendong Chen & Xueting Ye & Fuchao Liang & Panzhu Bai & Ying Sun & Shengping Li & Ruilian Xu & , 2024. "Multimodal single cell-resolved spatial proteomics reveal pancreatic tumor heterogeneity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Lu Li & Cuiji Sun & Yaoting Sun & Zhen Dong & Runxin Wu & Xiaoting Sun & Hanbin Zhang & Wenhao Jiang & Yan Zhou & Xufeng Cen & Shang Cai & Hongguang Xia & Yi Zhu & Tiannan Guo & Kiryl D. Piatkevich, 2022. "Spatially resolved proteomics via tissue expansion," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Yunhao Bai & Bokai Zhu & John-Paul Oliveria & Bryan J. Cannon & Dorien Feyaerts & Marc Bosse & Kausalia Vijayaragavan & Noah F. Greenwald & Darci Phillips & Christian M. Schürch & Samuel M. Naik & Edw, 2023. "Expanded vacuum-stable gels for multiplexed high-resolution spatial histopathology," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Valdemaras Petrosius & Pedro Aragon-Fernandez & Nil Üresin & Gergo Kovacs & Teeradon Phlairaharn & Benjamin Furtwängler & Jeff Op De Beeck & Sarah L. Skovbakke & Steffen Goletz & Simon Francis Thomsen, 2023. "Exploration of cell state heterogeneity using single-cell proteomics through sensitivity-tailored data-independent acquisition," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13858-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.