IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56556-9.html
   My bibliography  Save this article

In-situ electrochemical activation accelerates the magnesium-ion storage

Author

Listed:
  • Xuelian Qu

    (Fudan University)

  • Guodong Li

    (Fudan University)

  • Fengmei Wang

    (Fudan University)

  • Ying Zhang

    (Fudan University)

  • Tianyi Gao

    (Fudan University)

  • Yutong Luo

    (Fudan University)

  • Yun Song

    (Fudan University)

  • Fang Fang

    (Fudan University
    Anhui University)

  • Dalin Sun

    (Fudan University
    Anhui University)

  • Fei Wang

    (Fudan University
    Anhui University)

  • Yang Liu

    (Fudan University
    Anhui University)

Abstract

Rechargeable magnesium batteries (RMBs) have emerged as a highly promising post-lithium battery systems owing to their high safety, the abundant Magnesium (Mg) resources, and superior energy density. Nevertheless, the sluggish kinetics has severely limited the performance of RMBs. Here, we propose an in-situ electrochemical activation strategy for improving the Mg-ion storage kinetics. We reveal that the activation strategy can effectively optimize surface composition of cathode that favors Mg-ion transport. Cooperating with lattice modifications, the CuSe | |Mg batteries exhibit a specific capacity around 160 mAh/g after 400 cycles with a capacity retention of over 91% at the specific current of 400 mA/g. Of significant note is the slight decay in specific capacity from 205 to 141 mAh/g has been observed with an increase in specific current from 20 to 1000 mA/g. This strategy provides insights into accelerating Mg-ion storage kinetics, achieving a promising performance of RMBs especially at high specific current.

Suggested Citation

  • Xuelian Qu & Guodong Li & Fengmei Wang & Ying Zhang & Tianyi Gao & Yutong Luo & Yun Song & Fang Fang & Dalin Sun & Fei Wang & Yang Liu, 2025. "In-situ electrochemical activation accelerates the magnesium-ion storage," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56556-9
    DOI: 10.1038/s41467-025-56556-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56556-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56556-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yanliang Liang & Hui Dong & Doron Aurbach & Yan Yao, 2020. "Publisher Correction: Current status and future directions of multivalent metal-ion batteries," Nature Energy, Nature, vol. 5(10), pages 822-822, October.
    2. Feng Lin & Isaac M. Markus & Dennis Nordlund & Tsu-Chien Weng & Mark D. Asta & Huolin L. Xin & Marca M. Doeff, 2014. "Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    3. D. Aurbach & Z. Lu & A. Schechter & Y. Gofer & H. Gizbar & R. Turgeman & Y. Cohen & M. Moshkovich & E. Levi, 2000. "Prototype systems for rechargeable magnesium batteries," Nature, Nature, vol. 407(6805), pages 724-727, October.
    4. Zhenyou Li & Xiaoke Mu & Zhirong Zhao-Karger & Thomas Diemant & R. Jürgen Behm & Christian Kübel & Maximilian Fichtner, 2018. "Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    5. Yanliang Liang & Hui Dong & Doron Aurbach & Yan Yao, 2020. "Current status and future directions of multivalent metal-ion batteries," Nature Energy, Nature, vol. 5(9), pages 646-656, September.
    6. Hyun Deog Yoo & Yanliang Liang & Hui Dong & Junhao Lin & Hua Wang & Yisheng Liu & Lu Ma & Tianpin Wu & Yifei Li & Qiang Ru & Yan Jing & Qinyou An & Wu Zhou & Jinghua Guo & Jun Lu & Sokrates T. Panteli, 2017. "Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    7. Ananyo Roy & Mohsen Sotoudeh & Sirshendu Dinda & Yushu Tang & Christian Kübel & Axel Groß & Zhirong Zhao-Karger & Maximilian Fichtner & Zhenyou Li, 2024. "Improving rechargeable magnesium batteries through dual cation co-intercalation strategy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ananyo Roy & Mohsen Sotoudeh & Sirshendu Dinda & Yushu Tang & Christian Kübel & Axel Groß & Zhirong Zhao-Karger & Maximilian Fichtner & Zhenyou Li, 2024. "Improving rechargeable magnesium batteries through dual cation co-intercalation strategy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Qiannan Zhao & Kaiqi Zhao & Gao-Feng Han & Ming Huang & Ronghua Wang & Zhiqiao Wang & Wang Zhou & Yue Ma & Jilei Liu & Zhongting Wang & Chaohe Xu & Guangsheng Huang & Jingfeng Wang & Fusheng Pan & Jon, 2024. "High-capacity, fast-charging and long-life magnesium/black phosphorous composite negative electrode for non-aqueous magnesium battery," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Qingyuan Li & Jen-Hung Fang & Wenyuan Li & Xingbo Liu, 2022. "Novel Materials and Advanced Characterization for Energy Storage and Conversion," Energies, MDPI, vol. 15(20), pages 1-3, October.
    4. Enze Hu & Huifang Li & Yizhou Zhang & Xiaojun Wang & Zhiming Liu, 2023. "Recent Progresses on Vanadium Sulfide Cathodes for Aqueous Zinc-Ion Batteries," Energies, MDPI, vol. 16(2), pages 1-18, January.
    5. Elena G. Tolstopyatova & Mikhail A. Kamenskii & Veniamin V. Kondratiev, 2022. "Vanadium Oxide–Conducting Polymers Composite Cathodes for Aqueous Zinc-Ion Batteries: Interfacial Design and Enhancement of Electrochemical Performance," Energies, MDPI, vol. 15(23), pages 1-26, November.
    6. Yuanjian Li & Xiang Feng & Gaoliang Yang & Wei Ying Lieu & Lin Fu & Chang Zhang & Zhenxiang Xing & Man-Fai Ng & Qianfan Zhang & Wei Liu & Jun Lu & Zhi Wei Seh, 2024. "Toward waterproof magnesium metal anodes by uncovering water-induced passivation and drawing water-tolerant interphases," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Feifei Wang & Jipeng Zhang & Haotian Lu & Hanbing Zhu & Zihui Chen & Lu Wang & Jinyang Yu & Conghui You & Wenhao Li & Jianwei Song & Zhe Weng & Chunpeng Yang & Quan-Hong Yang, 2023. "Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Jiashen Meng & Xuhui Yao & Xufeng Hong & Lujun Zhu & Zhitong Xiao & Yongfeng Jia & Fang Liu & Huimin Song & Yunlong Zhao & Quanquan Pang, 2023. "A solution-to-solid conversion chemistry enables ultrafast-charging and long-lived molten salt aluminium batteries," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. F. Degen & M. Winter & D. Bendig & J. Tübke, 2023. "Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells," Nature Energy, Nature, vol. 8(11), pages 1284-1295, November.
    10. Zhirong Zhao-Karger & Yanlei Xiu & Zhenyou Li & Adam Reupert & Thomas Smok & Maximilian Fichtner, 2022. "Calcium-tin alloys as anodes for rechargeable non-aqueous calcium-ion batteries at room temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Minghao Zhang & Chenxi Sun & Guanhong Chen & Yuanhong Kang & Zeheng Lv & Jin Yang & Siyang Li & Pengxiang Lin & Rong Tang & Zhipeng Wen & Cheng Chao Li & Jinbao Zhao & Yang Yang, 2024. "Synergetic bifunctional Cu-In alloy interface enables Ah-level Zn metal pouch cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Ana Sanz Matias & Fabrice Roncoroni & Siddharth Sundararaman & David Prendergast, 2024. "Ca-dimers, solvent layering, and dominant electrochemically active species in Ca(BH4)2 in THF," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Ze Chen & Tairan Wang & Zhuoxi Wu & Yue Hou & Ao Chen & Yanbo Wang & Zhaodong Huang & Oliver G. Schmidt & Minshen Zhu & Jun Fan & Chunyi Zhi, 2024. "Polymer hetero-electrolyte enabled solid-state 2.4-V Zn/Li hybrid batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Yuanhe Sun & Rui Qi & Qi Lei & Wei Zhang & Haitao Li & Mengru Lin & Hao Shi & Jianrong Zeng & Wen Wen & Yi Gao & Xiaolong Li & Chunyi Zhi & Daming Zhu, 2025. "Reversible multivalent carrier redox exceeding intercalation capacity boundary," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    15. Jiashen Meng & Xufeng Hong & Zhitong Xiao & Linhan Xu & Lujun Zhu & Yongfeng Jia & Fang Liu & Liqiang Mai & Quanquan Pang, 2024. "Rapid-charging aluminium-sulfur batteries operated at 85 °C with a quaternary molten salt electrolyte," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Jelena Popovic, 2021. "The importance of electrode interfaces and interphases for rechargeable metal batteries," Nature Communications, Nature, vol. 12(1), pages 1-5, December.
    17. Chao Ye & Huan Li & Yujie Chen & Junnan Hao & Jiahao Liu & Jieqiong Shan & Shi-Zhang Qiao, 2024. "The role of electrocatalytic materials for developing post-lithium metal||sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Shitao Geng & Xiaoju Zhao & Qiuchen Xu & Bin Yuan & Yan Wang & Meng Liao & Lei Ye & Shuo Wang & Zhaofeng Ouyang & Liang Wu & Yongyang Wang & Chenyan Ma & Xiaojuan Zhao & Hao Sun, 2024. "A rechargeable Ca/Cl2 battery," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Dong, Ao & Ma, Ruifei & Deng, Yelin, 2023. "Optimization on charging of the direct hybrid lithium-ion battery and supercapacitor for high power application through resistance balancing," Energy, Elsevier, vol. 273(C).
    20. Odoom-Wubah, Tareque & Rubio, Saúl & Tirado, José L. & Ortiz, Gregorio F. & Akoi, Bior James & Huang, Jiale & Li, Qingbiao, 2020. "Waste Pd/Fish-Collagen as anode for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56556-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.