IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44495-2.html
   My bibliography  Save this article

Improving rechargeable magnesium batteries through dual cation co-intercalation strategy

Author

Listed:
  • Ananyo Roy

    (Helmholtz Institute Ulm (HIU))

  • Mohsen Sotoudeh

    (Institute of Theoretical Chemistry, Universität Ulm)

  • Sirshendu Dinda

    (Helmholtz Institute Ulm (HIU))

  • Yushu Tang

    (Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT)
    Karlsruhe Institute of Technology (KIT))

  • Christian Kübel

    (Helmholtz Institute Ulm (HIU)
    Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT)
    Karlsruhe Institute of Technology (KIT))

  • Axel Groß

    (Helmholtz Institute Ulm (HIU)
    Institute of Theoretical Chemistry, Universität Ulm)

  • Zhirong Zhao-Karger

    (Helmholtz Institute Ulm (HIU)
    Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT))

  • Maximilian Fichtner

    (Helmholtz Institute Ulm (HIU)
    Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT))

  • Zhenyou Li

    (Helmholtz Institute Ulm (HIU)
    Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
    Shan-dong Energy Institute
    Qingdao New Energy Shandong Laboratory)

Abstract

The development of competitive rechargeable Mg batteries is hindered by the poor mobility of divalent Mg ions in cathode host materials. In this work, we explore the dual cation co-intercalation strategy to mitigate the sluggishness of Mg2+ in model TiS2 material. The strategy involves pairing Mg2+ with Li+ or Na+ in dual-salt electrolytes in order to exploit the faster mobility of the latter with the aim to reach better electrochemical performance. A combination of experiments and theoretical calculations details the charge storage and redox mechanism of co-intercalating cationic charge carriers. Comparative evaluation reveals that the redox activity of Mg2+ can be improved significantly with the help of the dual cation co-intercalation strategy, although the ionic radius of the accompanying monovalent ion plays a critical role on the viability of the strategy. More specifically, a significantly higher Mg2+ quantity intercalates with Li+ than with Na+ in TiS2. The reason being the absence of phase transition in the former case, which enables improved Mg2+ storage. Our results highlight dual cation co-intercalation strategy as an alternative approach to improve the electrochemical performance of rechargeable Mg batteries by opening the pathway to a rich playground of advanced cathode materials for multivalent battery applications.

Suggested Citation

  • Ananyo Roy & Mohsen Sotoudeh & Sirshendu Dinda & Yushu Tang & Christian Kübel & Axel Groß & Zhirong Zhao-Karger & Maximilian Fichtner & Zhenyou Li, 2024. "Improving rechargeable magnesium batteries through dual cation co-intercalation strategy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44495-2
    DOI: 10.1038/s41467-023-44495-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44495-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44495-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yanliang Liang & Hui Dong & Doron Aurbach & Yan Yao, 2020. "Publisher Correction: Current status and future directions of multivalent metal-ion batteries," Nature Energy, Nature, vol. 5(10), pages 822-822, October.
    2. Richard Schmuch & Ralf Wagner & Gerhard Hörpel & Tobias Placke & Martin Winter, 2018. "Performance and cost of materials for lithium-based rechargeable automotive batteries," Nature Energy, Nature, vol. 3(4), pages 267-278, April.
    3. Zhenyou Li & Xiaoke Mu & Zhirong Zhao-Karger & Thomas Diemant & R. Jürgen Behm & Christian Kübel & Maximilian Fichtner, 2018. "Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    4. Yanliang Liang & Hui Dong & Doron Aurbach & Yan Yao, 2020. "Current status and future directions of multivalent metal-ion batteries," Nature Energy, Nature, vol. 5(9), pages 646-656, September.
    5. Hyun Deog Yoo & Yanliang Liang & Hui Dong & Junhao Lin & Hua Wang & Yisheng Liu & Lu Ma & Tianpin Wu & Yifei Li & Qiang Ru & Yan Jing & Qinyou An & Wu Zhou & Jinghua Guo & Jun Lu & Sokrates T. Panteli, 2017. "Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    6. Fabian Duffner & Niklas Kronemeyer & Jens Tübke & Jens Leker & Martin Winter & Richard Schmuch, 2021. "Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure," Nature Energy, Nature, vol. 6(2), pages 123-134, February.
    7. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingyuan Li & Jen-Hung Fang & Wenyuan Li & Xingbo Liu, 2022. "Novel Materials and Advanced Characterization for Energy Storage and Conversion," Energies, MDPI, vol. 15(20), pages 1-3, October.
    2. Qiannan Zhao & Kaiqi Zhao & Gao-Feng Han & Ming Huang & Ronghua Wang & Zhiqiao Wang & Wang Zhou & Yue Ma & Jilei Liu & Zhongting Wang & Chaohe Xu & Guangsheng Huang & Jingfeng Wang & Fusheng Pan & Jon, 2024. "High-capacity, fast-charging and long-life magnesium/black phosphorous composite negative electrode for non-aqueous magnesium battery," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. F. Degen & M. Winter & D. Bendig & J. Tübke, 2023. "Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells," Nature Energy, Nature, vol. 8(11), pages 1284-1295, November.
    4. Gutsch, Moritz & Leker, Jens, 2024. "Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling," Applied Energy, Elsevier, vol. 353(PB).
    5. Zhirong Zhao-Karger & Yanlei Xiu & Zhenyou Li & Adam Reupert & Thomas Smok & Maximilian Fichtner, 2022. "Calcium-tin alloys as anodes for rechargeable non-aqueous calcium-ion batteries at room temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Enze Hu & Huifang Li & Yizhou Zhang & Xiaojun Wang & Zhiming Liu, 2023. "Recent Progresses on Vanadium Sulfide Cathodes for Aqueous Zinc-Ion Batteries," Energies, MDPI, vol. 16(2), pages 1-18, January.
    8. Elena G. Tolstopyatova & Mikhail A. Kamenskii & Veniamin V. Kondratiev, 2022. "Vanadium Oxide–Conducting Polymers Composite Cathodes for Aqueous Zinc-Ion Batteries: Interfacial Design and Enhancement of Electrochemical Performance," Energies, MDPI, vol. 15(23), pages 1-26, November.
    9. Duffner, F. & Wentker, M. & Greenwood, M. & Leker, J., 2020. "Battery cost modeling: A review and directions for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    10. Yang, Chen, 2022. "Running battery electric vehicles with extended range: Coupling cost and energy analysis," Applied Energy, Elsevier, vol. 306(PB).
    11. Christian Thies & Karsten Kieckhäfer & Thomas S. Spengler, 2021. "Activity analysis based modeling of global supply chains for sustainability assessment," Journal of Business Economics, Springer, vol. 91(2), pages 215-252, March.
    12. Yang, Chen & Li, Peng & Yu, Jia & Zhao, Li-Da & Kong, Long, 2020. "Approaching energy-dense and cost-effective lithium–sulfur batteries: From materials chemistry and price considerations," Energy, Elsevier, vol. 201(C).
    13. Jingzhao Zhang & Yanan Wang & Benben Jiang & Haowei He & Shaobo Huang & Chen Wang & Yang Zhang & Xuebing Han & Dongxu Guo & Guannan He & Minggao Ouyang, 2023. "Realistic fault detection of li-ion battery via dynamical deep learning," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Wang, Fujin & Zhao, Zhibin & Zhai, Zhi & Guo, Yanjie & Xi, Huan & Wang, Shibin & Chen, Xuefeng, 2023. "Feature disentanglement and tendency retainment with domain adaptation for Lithium-ion battery capacity estimation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. Ana Sanz Matias & Fabrice Roncoroni & Siddharth Sundararaman & David Prendergast, 2024. "Ca-dimers, solvent layering, and dominant electrochemically active species in Ca(BH4)2 in THF," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Su, Xiaojia & Sun, Bingxiang & Wang, Jiaju & Zhang, Weige & Ma, Shichang & He, Xitian & Ruan, Haijun, 2022. "Fast capacity estimation for lithium-ion battery based on online identification of low-frequency electrochemical impedance spectroscopy and Gaussian process regression," Applied Energy, Elsevier, vol. 322(C).
    17. Xie, Peng & Jin, Lu & Qiao, Geng & Lin, Cheng & Barreneche, Camila & Ding, Yulong, 2022. "Thermal energy storage for electric vehicles at low temperatures: Concepts, systems, devices and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Ze Chen & Tairan Wang & Zhuoxi Wu & Yue Hou & Ao Chen & Yanbo Wang & Zhaodong Huang & Oliver G. Schmidt & Minshen Zhu & Jun Fan & Chunyi Zhi, 2024. "Polymer hetero-electrolyte enabled solid-state 2.4-V Zn/Li hybrid batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Plunkett, Samuel T. & Chen, Chengxiu & Rojaee, Ramin & Doherty, Patrick & Sik Oh, Yun & Galazutdinova, Yana & Krishnamurthy, Mahesh & Al-Hallaj, Said, 2021. "Enhancing thermal safety in lithium-ion battery packs through parallel cell ‘current dumping’ mitigation," Applied Energy, Elsevier, vol. 286(C).
    20. Jiashen Meng & Xufeng Hong & Zhitong Xiao & Linhan Xu & Lujun Zhu & Yongfeng Jia & Fang Liu & Liqiang Mai & Quanquan Pang, 2024. "Rapid-charging aluminium-sulfur batteries operated at 85 °C with a quaternary molten salt electrolyte," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44495-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.