IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56489-3.html
   My bibliography  Save this article

A ribosome-associating chaperone mediates GTP-driven vectorial folding of nascent eEF1A

Author

Listed:
  • Ibrahim M. Sabbarini

    (Harvard University)

  • Dvir Reif

    (Harvard University)

  • Kibum Park

    (Harvard University)

  • Alexander J. McQuown

    (Harvard University)

  • Anjali R. Nelliat

    (Harvard Medical School)

  • Charlotte Trejtnar

    (Goethe University)

  • Volker Dötsch

    (Goethe University)

  • Eugene I. Shakhnovich

    (Harvard University)

  • Andrew W. Murray

    (Harvard University)

  • Vladimir Denic

    (Harvard University)

Abstract

Eukaryotic translation elongation factor 1A (eEF1A) is a highly abundant, multi-domain GTPase. Post-translational steps essential for eEF1A biogenesis are carried out by bespoke chaperones but co-translational mechanisms tailored to eEF1A folding remain unexplored. Here, we use AlphaPulldown to identify Ypl225w (also known as Chp1, Chaperone 1 for eEF1A) as a conserved yeast protein predicted to stabilize the N-terminal, GTP-binding (G) domain of eEF1A against its misfolding propensity, as predicted by computational simulations and validated by microscopy analysis of ypl225wΔ cells. Proteomics and biochemical reconstitution reveal that Ypl225w functions as a co-translational chaperone by forming dual interactions with the eEF1A G domain nascent chain and the UBA domain of ribosome-bound nascent polypeptide-associated complex (NAC). Lastly, we show that Ypl225w primes eEF1A nascent chains for binding to GTP as part of a folding mechanism tightly coupled to chaperone recycling. Our work shows that an ATP-independent chaperone can drive vectorial folding of nascent chains by co-opting G protein nucleotide binding.

Suggested Citation

  • Ibrahim M. Sabbarini & Dvir Reif & Kibum Park & Alexander J. McQuown & Anjali R. Nelliat & Charlotte Trejtnar & Volker Dötsch & Eugene I. Shakhnovich & Andrew W. Murray & Vladimir Denic, 2025. "A ribosome-associating chaperone mediates GTP-driven vectorial folding of nascent eEF1A," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56489-3
    DOI: 10.1038/s41467-025-56489-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56489-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56489-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yan Chen & Bin Tsai & Ningning Li & Ning Gao, 2022. "Structural remodeling of ribosome associated Hsp40-Hsp70 chaperones during co-translational folding," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Kanghyun Lee & Thomas Ziegelhoffer & Wojciech Delewski & Scott E. Berger & Grzegorz Sabat & Elizabeth A. Craig, 2021. "Pathway of Hsp70 interactions at the ribosome," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Edward L. Huttlin & Raphael J. Bruckner & Joao A. Paulo & Joe R. Cannon & Lily Ting & Kurt Baltier & Greg Colby & Fana Gebreab & Melanie P. Gygi & Hannah Parzen & John Szpyt & Stanley Tam & Gabriela Z, 2017. "Architecture of the human interactome defines protein communities and disease networks," Nature, Nature, vol. 545(7655), pages 505-509, May.
    4. Melania Minoia & Jany Quintana-Cordero & Katharina Jetzinger & Ilgin Eser Kotan & Kathryn Jane Turnbull & Michela Ciccarelli & Anna E. Masser & Dorina Liebers & Eloïse Gouarin & Marius Czech & Vasili , 2024. "Chp1 is a dedicated chaperone at the ribosome that safeguards eEF1A biogenesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Sony Malhotra & Agnel Praveen Joseph & Jeyan Thiyagalingam & Maya Topf, 2021. "Assessment of protein–protein interfaces in cryo-EM derived assemblies," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Amir Bitran & William M Jacobs & Eugene Shakhnovich, 2020. "Validation of DBFOLD: An efficient algorithm for computing folding pathways of complex proteins," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-32, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Xiongfei & Xiong, Long & Bai, Ling & Zhao, Na & Zhang, Jiu & Xia, Ke & Deng, Kai & Zheng, Bo, 2021. "Quantifying the social structure of elites in ancient China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    2. Yan Chen & Bin Tsai & Ningning Li & Ning Gao, 2022. "Structural remodeling of ribosome associated Hsp40-Hsp70 chaperones during co-translational folding," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Nilesh Kumar & M. Shahid Mukhtar, 2024. "Viral Targets in the Human Interactome with Comprehensive Centrality Analysis: SARS-CoV-2, a Case Study," Data, MDPI, vol. 9(8), pages 1-12, August.
    4. Ann Schirin Mirsanaye & Saskia Hoffmann & Melanie Weisser & Andreas Mund & Blanca Lopez Mendez & Dimitris Typas & Johannes Boom & Bente Benedict & Ivo A. Hendriks & Michael Lund Nielsen & Hemmo Meyer , 2024. "VCF1 is a p97/VCP cofactor promoting recognition of ubiquitylated p97-UFD1-NPL4 substrates," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Marius A. Klein & Klemens Wild & Miglė Kišonaitė & Irmgard Sinning, 2024. "Methionine aminopeptidase 2 and its autoproteolysis product have different binding sites on the ribosome," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Qian Jiang & Qijin Zhao & Yibing Chen & Chunxiao Ma & Xiaohong Peng & Xi Wu & Xingfeng Liu & Ruoran Wang & Shaocong Hou & Lijuan Kong & Yanjun Wan & Shusen Wang & Zhuo-Xian Meng & Bing Cui & Liangyi C, 2024. "Galectin-3 impairs calcium transients and β-cell function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Tânia F. Custódio & Maxime Killer & Dingquan Yu & Virginia Puente & Daniel P. Teufel & Alexander Pautsch & Gisela Schnapp & Marc Grundl & Jan Kosinski & Christian Löw, 2023. "Molecular basis of TASL recruitment by the peptide/histidine transporter 1, PHT1," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Taiga Miyazaki & Shintaro Shimamura & Yohsuke Nagayoshi & Hironobu Nakayama & Akihiro Morita & Yutaka Tanaka & Yasuhiko Matsumoto & Tatsuo Inamine & Hiroshi Nishikawa & Nana Nakada & Makoto Sumiyoshi , 2025. "Mechanisms of multidrug resistance caused by an Ipi1 mutation in the fungal pathogen Candida glabrata," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    9. Bai, Ling & Xiong, Long & Zhao, Na & Xia, Ke & Jiang, Xiong-Fei, 2022. "Dynamical structure of social map in ancient China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    10. Weize Wang & Ling Liang & Zonglin Dai & Peng Zuo & Shang Yu & Yishuo Lu & Dian Ding & Hongyi Chen & Hui Shan & Yan Jin & Youdong Mao & Yuxin Yin, 2024. "A conserved N-terminal motif of CUL3 contributes to assembly and E3 ligase activity of CRL3KLHL22," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Akshat Singhal & Song Cao & Christopher Churas & Dexter Pratt & Santo Fortunato & Fan Zheng & Trey Ideker, 2020. "Multiscale community detection in Cytoscape," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-10, October.
    12. Sabrina Villar-Pazos & Laurel Thomas & Yunhan Yang & Kun Chen & Jenea B. Lyles & Bradley J. Deitch & Joseph Ochaba & Karen Ling & Berit Powers & Sebastien Gingras & Holly B. Kordasiewicz & Melanie J. , 2023. "Neural deficits in a mouse model of PACS1 syndrome are corrected with PACS1- or HDAC6-targeting therapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Xing Chen & Chunyu Yu & Xinhua Liu & Beibei Liu & Xiaodi Wu & Jiajing Wu & Dong Yan & Lulu Han & Zifan Tang & Xinyi Yuan & Jianqiu Wang & Yue Wang & Shumeng Liu & Lin Shan & Yongfeng Shang, 2022. "Intracellular galectin-3 is a lipopolysaccharide sensor that promotes glycolysis through mTORC1 activation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Xinxin Xu & Sheng Ma & Ziqiang Zeng, 2019. "Complex network analysis of bilateral international investment under de-globalization: Structural properties and evolution," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-16, April.
    15. Mahmoud H Elbatreek & Sepideh Sadegh & Elisa Anastasi & Emre Guney & Cristian Nogales & Tim Kacprowski & Ahmed A Hassan & Andreas Teubner & Po-Hsun Huang & Chien-Yi Hsu & Paul M H Schiffers & Ger M Ja, 2020. "NOX5-induced uncoupling of endothelial NO synthase is a causal mechanism and theragnostic target of an age-related hypertension endotype," PLOS Biology, Public Library of Science, vol. 18(11), pages 1-25, November.
    16. Michael A. Skinnider & Mopelola O. Akinlaja & Leonard J. Foster, 2023. "Mapping protein states and interactions across the tree of life with co-fractionation mass spectrometry," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56489-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.