IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56347-2.html
   My bibliography  Save this article

Brd7 loss reawakens dormant metastasis initiating cells in lung by forging an immunosuppressive niche

Author

Listed:
  • Jayanta Mondal

    (University of Texas MD Anderson Cancer Center
    The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences
    The University of Texas MD Anderson Cancer Center)

  • Junfeng Zhang

    (The University of Texas MD Anderson Cancer Center
    Guangzhou International Bio Island)

  • Feng Qing

    (Guangzhou International Bio Island)

  • Shunping Li

    (Guangzhou International Bio Island)

  • Dhiraj Kumar

    (New York
    New York
    Interventional Oncology)

  • Jason T. Huse

    (University of Texas MD Anderson Cancer Center
    University of Texas MD Anderson Cancer Center)

  • Filippo G. Giancotti

    (New York
    New York)

Abstract

Metastasis in cancer is influenced by epigenetic factors. Using an in vivo screen, we demonstrate that several subunits of the polybromo-associated BAF (PBAF) chromatin remodeling complex, particularly Brd7, are required for maintaining breast cancer metastatic dormancy in the lungs of female mice. Brd7 loss induces metastatic reawakening, along with modifications in epigenomic landscapes and upregulated oncogenic signaling. Breast cancer cells harboring Brd7 inactivation also reprogram the surrounding immune microenvironment by downregulating MHC-1 expression and promoting a pro-metastatic cytokine profile. Flow cytometric and single-cell analyses reveal increased levels of pro-tumorigenic inflammatory and transitional neutrophils, CD8+ exhausted T cells, and CD4+ stress response T cells in lungs from female mice harboring Brd7-deficient metastases. Finally, attenuating this immunosuppressive milieu by neutrophil depletion, neutrophil extracellular trap (NET) inhibition, or immune checkpoint therapy abrogates metastatic outgrowth. These findings implicate Brd7 and PBAF in triggering metastatic outgrowth in cancer, pointing to targetable underlying mechanisms involving specific immune cell compartments.

Suggested Citation

  • Jayanta Mondal & Junfeng Zhang & Feng Qing & Shunping Li & Dhiraj Kumar & Jason T. Huse & Filippo G. Giancotti, 2025. "Brd7 loss reawakens dormant metastasis initiating cells in lung by forging an immunosuppressive niche," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56347-2
    DOI: 10.1038/s41467-025-56347-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56347-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56347-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hedayatollah Hosseini & Milan M. S. Obradović & Martin Hoffmann & Kathryn L. Harper & Maria Soledad Sosa & Melanie Werner-Klein & Lahiri Kanth Nanduri & Christian Werno & Carolin Ehrl & Matthias Manec, 2016. "Early dissemination seeds metastasis in breast cancer," Nature, Nature, vol. 540(7634), pages 552-558, December.
    2. Laura Bonapace & Marie-May Coissieux & Jeffrey Wyckoff & Kirsten D. Mertz & Zsuzsanna Varga & Tobias Junt & Mohamed Bentires-Alj, 2014. "Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis," Nature, Nature, vol. 515(7525), pages 130-133, November.
    3. Seth B. Coffelt & Kelly Kersten & Chris W. Doornebal & Jorieke Weiden & Kim Vrijland & Cheei-Sing Hau & Niels J. M. Verstegen & Metamia Ciampricotti & Lukas J. A. C. Hawinkels & Jos Jonkers & Karin E., 2015. "IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis," Nature, Nature, vol. 522(7556), pages 345-348, June.
    4. Vijay Shankaran & Hiroaki Ikeda & Allen T. Bruce & J. Michael White & Paul E. Swanson & Lloyd J. Old & Robert D. Schreiber, 2001. "IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity," Nature, Nature, vol. 410(6832), pages 1107-1111, April.
    5. Ana Luísa Correia & Joao C. Guimaraes & Priska Auf der Maur & Duvini De Silva & Marcel P. Trefny & Ryoko Okamoto & Sandro Bruno & Alexander Schmidt & Kirsten Mertz & Katrin Volkmann & Luigi Terraccian, 2021. "Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy," Nature, Nature, vol. 594(7864), pages 566-571, June.
    6. Ana Luísa Correia & Joao C. Guimaraes & Priska Auf der Maur & Duvini De Silva & Marcel P. Trefny & Ryoko Okamoto & Sandro Bruno & Alexander Schmidt & Kirsten Mertz & Katrin Volkmann & Luigi Terraccian, 2021. "Author Correction: Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy," Nature, Nature, vol. 600(7887), pages 7-7, December.
    7. Stefanie K. Wculek & Ilaria Malanchi, 2015. "Neutrophils support lung colonization of metastasis-initiating breast cancer cells," Nature, Nature, vol. 528(7582), pages 413-417, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junho Lee & Donggu Lee & Sean Lawler & Yangjin Kim, 2021. "Role of neutrophil extracellular traps in regulation of lung cancer invasion and metastasis: Structural insights from a computational model," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-29, February.
    2. Charlotte R. Bell & Victoria S. Pelly & Agrin Moeini & Shih-Chieh Chiang & Eimear Flanagan & Christian P. Bromley & Christopher Clark & Charles H. Earnshaw & Maria A. Koufaki & Eduardo Bonavita & Sant, 2022. "Chemotherapy-induced COX-2 upregulation by cancer cells defines their inflammatory properties and limits the efficacy of chemoimmunotherapy combinations," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Sara Orehek & Taja Železnik Ramuta & Duško Lainšček & Špela Malenšek & Martin Šala & Mojca Benčina & Roman Jerala & Iva Hafner-Bratkovič, 2024. "Cytokine-armed pyroptosis induces antitumor immunity against diverse types of tumors," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Jian Cao & Xuan Zhu & Xiaokun Zhao & Xue-Feng Li & Ran Xu, 2016. "Neutrophil-to-Lymphocyte Ratio Predicts PSA Response and Prognosis in Prostate Cancer: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-15, July.
    5. Ruolin Li & Wenjin Luo & Xiangjun Chen & Qinglian Zeng & Shumin Yang & Ping Wang & Jinbo Hu & Aijun Chen, 2024. "An observational and genetic investigation into the association between psoriasis and risk of malignancy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Chun Wai Wong & Christos Evangelou & Kieran N. Sefton & Rotem Leshem & Wei Zhang & Vishaka Gopalan & Sorayut Chattrakarn & Macarena Lucia Fernandez Carro & Erez Uzuner & Holly Mole & Daniel J. Wilcock, 2023. "PARP14 inhibition restores PD-1 immune checkpoint inhibitor response following IFNγ-driven acquired resistance in preclinical cancer models," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    7. Hongyu Zhou & Licheng Tan & Baifeng Zhang & Dora Lai Wan Kwong & Ching Ngar Wong & Yu Zhang & Beibei Ru & Yingchen Lyu & Kin To Hugo Siu & Jie Luo & Yuma Yang & Qin Liu & Yixin Chen & Weiguang Zhang &, 2024. "GPRC5A promotes lung colonization of esophageal squamous cell carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Qiaoqi Sui & Xi Zhang & Chao Chen & Jinghua Tang & Jiehai Yu & Weihao Li & Kai Han & Wu Jiang & Leen Liao & Lingheng Kong & Yuan Li & Zhenlin Hou & Chi Zhou & Chenzhi Zhang & Linjie Zhang & Binyi Xiao, 2022. "Inflammation promotes resistance to immune checkpoint inhibitors in high microsatellite instability colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Heng-Jia Liu & Heng Du & Damir Khabibullin & Mahsa Zarei & Kevin Wei & Gordon J. Freeman & David J. Kwiatkowski & Elizabeth P. Henske, 2023. "mTORC1 upregulates B7-H3/CD276 to inhibit antitumor T cells and drive tumor immune evasion," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    10. Mei-Xin Li & Sheng Hu & He-Hua Lei & Meng Yuan & Xu Li & Wen-Kui Hou & Xiang-Jie Huang & Bing-Wen Xiao & Teng-Xiang Yu & Xiao-Hui Zhang & Xiao-Ting Wu & Wen-Qiang Jing & Hyeon-Jeong Lee & Juan-Juan Li, 2024. "Tumor-derived miR-9-5p-loaded EVs regulate cholesterol homeostasis to promote breast cancer liver metastasis in mice," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Ariane F. Busso-Lopes & Leandro X. Neves & Guilherme A. Câmara & Daniela C. Granato & Marco Antônio M. Pretti & Henry Heberle & Fábio M. S. Patroni & Jamile Sá & Sami Yokoo & César Rivera & Romênia R., 2022. "Connecting multiple microenvironment proteomes uncovers the biology in head and neck cancer," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    12. Scott C. Lien & Dalam Ly & S. Y. Cindy Yang & Ben X. Wang & Derek L. Clouthier & Michael St. Paul & Ramy Gadalla & Babak Noamani & Carlos R. Garcia-Batres & Sarah Boross-Harmer & Philippe L. Bedard & , 2024. "Tumor reactive γδ T cells contribute to a complete response to PD-1 blockade in a Merkel cell carcinoma patient," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Vivian W. C. Lau & Gracie J. Mead & Zofia Varyova & Julie M. Mazet & Anagha Krishnan & Edward W. Roberts & Gennaro Prota & Uzi Gileadi & Kim S. Midwood & Vincenzo Cerundolo & Audrey Gérard, 2025. "Remodelling of the immune landscape by IFNγ counteracts IFNγ-dependent tumour escape in mouse tumour models," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    14. Juan F. Quintana & Matthew C. Sinton & Praveena Chandrasegaran & Agatha Nabilla Lestari & Rhiannon Heslop & Bachar Cheaib & John Ogunsola & Dieudonne Mumba Ngoyi & Nono-Raymond Kuispond Swar & Anneli , 2023. "γδ T cells control murine skin inflammation and subcutaneous adipose wasting during chronic Trypanosoma brucei infection," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Zhiyuan Zheng & Ya-nan Li & Shanfen Jia & Mengting Zhu & Lijuan Cao & Min Tao & Jingting Jiang & Shenghua Zhan & Yongjing Chen & Ping-Jin Gao & Weiguo Hu & Ying Wang & Changshun Shao & Yufang Shi, 2021. "Lung mesenchymal stromal cells influenced by Th2 cytokines mobilize neutrophils and facilitate metastasis by producing complement C3," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    16. Shu Zhang & Wen Fang & Siqi Zhou & Dongming Zhu & Ruidong Chen & Xin Gao & Zhuojin Li & Yao Fu & Yixuan Zhang & Fa Yang & Jing Zhao & Hao Wu & Pin Wang & Yonghua Shen & Shanshan Shen & Guifang Xu & Le, 2023. "Single cell transcriptomic analyses implicate an immunosuppressive tumor microenvironment in pancreatic cancer liver metastasis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Hui Wang & Qianfan Hu & Yuzhong Chen & Xing Huang & Yipeng Feng & Yuanjian Shi & Rutao Li & Xuewen Yin & Xuming Song & Yingkuan Liang & Te Zhang & Lin Xu & Gaochao Dong & Feng Jiang, 2024. "Ferritinophagy mediates adaptive resistance to EGFR tyrosine kinase inhibitors in non-small cell lung cancer," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    18. Yazhong Cui & Yang Miao & Longzhi Cao & Lifang Guo & Yue Cui & Chuanzhe Yan & Zhi Zeng & Mo Xu & Ting Han, 2023. "Activation of melanocortin-1 receptor signaling in melanoma cells impairs T cell infiltration to dampen antitumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Laura C. D. Pomatto-Watson & Monica Bodogai & Oye Bosompra & Jonathan Kato & Sarah Wong & Melissa Carpenter & Eleonora Duregon & Dolly Chowdhury & Priya Krishna & Sandy Ng & Emeline Ragonnaud & Robert, 2021. "Daily caloric restriction limits tumor growth more effectively than caloric cycling regardless of dietary composition," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    20. Federica Portale & Roberta Carriero & Marta Iovino & Paolo Kunderfranco & Marta Pandini & Giulia Marelli & Nicolò Morina & Massimo Lazzeri & Paolo Casale & Piergiuseppe Colombo & Gabriele Simone & Chi, 2024. "C/EBPβ-dependent autophagy inhibition hinders NK cell function in cancer," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56347-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.