IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56060-0.html
   My bibliography  Save this article

Supramolecular force-driven non-fullerene acceptors as an electron-transporting layer for efficient inverted perovskite solar cells

Author

Listed:
  • Xiaofeng Huang

    (City University of Hong Kong)

  • Dongdong Xia

    (Jiangxi Academy of Sciences)

  • Qian Xie

    (Jiangxi Academy of Sciences)

  • Deng Wang

    (City University of Hong Kong
    City University of Hong Kong)

  • Qian Li

    (City University of Hong Kong)

  • Chaowei Zhao

    (City University of Hong Kong
    Jiangxi Academy of Sciences
    City University of Hong Kong
    Beijing University of Chemical Technology)

  • Jun Yin

    (The Hong Kong Polytechnic University)

  • Fang Cao

    (Xiamen University)

  • Zhenhuang Su

    (Chinese Academy of Sciences)

  • Zixin Zeng

    (City University of Hong Kong)

  • Wenlin Jiang

    (City University of Hong Kong
    City University of Hong Kong)

  • Werner Kaminsky

    (University of Washington)

  • Kaikai Liu

    (City University of Hong Kong
    City University of Hong Kong)

  • Francis R. Lin

    (City University of Hong Kong
    City University of Hong Kong
    City University of Hong Kong)

  • Qifan Feng

    (City University of Hong Kong)

  • Binghui Wu

    (Xiamen University)

  • Sai-Wing Tsang

    (City University of Hong Kong)

  • Dangyuan Lei

    (City University of Hong Kong)

  • Weiwei Li

    (Beijing University of Chemical Technology)

  • Alex K.-Y. Jen

    (City University of Hong Kong
    City University of Hong Kong
    City University of Hong Kong
    University of Washington)

Abstract

Fullerene derivatives are widely employed as efficient electron-transporting layers (ETLs) in p-i-n perovskite photovoltaics but face challenges in mitigating interfacial recombination losses and ensuring stable film morphology. Non-fullerene acceptors (NFAs), commonly utilized in organic photovoltaics, present a promising alternative to fullerene-based ETLs. Nevertheless, the suboptimal performance of NFA-based devices underscores the need for molecular engineering to tailor their properties. Herein, we develop two Y-type NFAs, Y-Phen and Y-CE, by substituting the benzothiadiazole core of Y6 with higher-polarity phenanthroline and crown ether. These modifications effectively enhance carrier kinetics by (1) promoting ordered molecular assembly on the perovskite surface through supramolecular interactions, thereby optimizing interfacial energetic alignment, and (2) improving the molecular packing to facilitate efficient charge transport. Using Y-CE as the ETL, the device achieves a certified power conversion efficiency (PCE) of 25.59%. Furthermore, the optimized device exhibits less than 10% degradation in PCE after 1440 hours of thermal aging. This work offers valuable insights into designing NFA-based ETLs for high-performance perovskite photovoltaics.

Suggested Citation

  • Xiaofeng Huang & Dongdong Xia & Qian Xie & Deng Wang & Qian Li & Chaowei Zhao & Jun Yin & Fang Cao & Zhenhuang Su & Zixin Zeng & Wenlin Jiang & Werner Kaminsky & Kaikai Liu & Francis R. Lin & Qifan Fe, 2025. "Supramolecular force-driven non-fullerene acceptors as an electron-transporting layer for efficient inverted perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56060-0
    DOI: 10.1038/s41467-025-56060-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56060-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56060-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mingjie Li & Saikat Bhaumik & Teck Wee Goh & Muduli Subas Kumar & Natalia Yantara & Michael Grätzel & Subodh Mhaisalkar & Nripan Mathews & Tze Chien Sum, 2017. "Correction: Corrigendum: Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals," Nature Communications, Nature, vol. 8(1), pages 1-1, August.
    2. Yuchuan Shao & Yongbo Yuan & Jinsong Huang, 2016. "Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells," Nature Energy, Nature, vol. 1(1), pages 1-6, January.
    3. Guichuan Zhang & Xian-Kai Chen & Jingyang Xiao & Philip C. Y. Chow & Minrun Ren & Grit Kupgan & Xuechen Jiao & Christopher C. S. Chan & Xiaoyan Du & Ruoxi Xia & Ziming Chen & Jun Yuan & Yunqiang Zhang, 2020. "Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Kang An & Wenkai Zhong & Feng Peng & Wanyuan Deng & Ying Shang & Huilei Quan & Hong Qiu & Cheng Wang & Feng Liu & Hongbin Wu & Ning Li & Fei Huang & Lei Ying, 2023. "Mastering morphology of non-fullerene acceptors towards long-term stable organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Huazhe Liang & Xingqi Bi & Hongbin Chen & Tengfei He & Yi Lin & Yunxin Zhang & Kangqiao Ma & Wanying Feng & Zaifei Ma & Guankui Long & Chenxi Li & Bin Kan & Hongtao Zhang & Oleg A. Rakitin & Xiangjian, 2023. "A rare case of brominated small molecule acceptors for high-efficiency organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Ahmed A. Said & Erkan Aydin & Esma Ugur & Zhaojian Xu & Caner Deger & Badri Vishal & Aleš Vlk & Pia Dally & Bumin K. Yildirim & Randi Azmi & Jiang Liu & Edward A. Jackson & Holly M. Johnson & Manting , 2024. "Sublimed C60 for efficient and repeatable perovskite-based solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Shengfan Wu & Yichao Yan & Jun Yin & Kui Jiang & Fengzhu Li & Zixin Zeng & Sai-Wing Tsang & Alex K.-Y. Jen, 2024. "Redox mediator-stabilized wide-bandgap perovskites for monolithic perovskite-organic tandem solar cells," Nature Energy, Nature, vol. 9(4), pages 411-421, April.
    8. Shaun Tan & Tianyi Huang & Ilhan Yavuz & Rui Wang & Tae Woong Yoon & Mingjie Xu & Qiyu Xing & Keonwoo Park & Do-Kyoung Lee & Chung-Hao Chen & Ran Zheng & Taegeun Yoon & Yepin Zhao & Hao-Cheng Wang & D, 2022. "Stability-limiting heterointerfaces of perovskite photovoltaics," Nature, Nature, vol. 605(7909), pages 268-273, May.
    9. Randi Azmi & Drajad Satrio Utomo & Badri Vishal & Shynggys Zhumagali & Pia Dally & Andi Muhammad Risqi & Adi Prasetio & Esma Ugur & Fangfang Cao & Imil Fadli Imran & Ahmed Ali Said & Anil Reddy Pinint, 2024. "Double-side 2D/3D heterojunctions for inverted perovskite solar cells," Nature, Nature, vol. 628(8006), pages 93-98, April.
    10. Yuanyuan Zhou & Laura M. Herz & Alex K-Y. Jen & Michael Saliba, 2022. "Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells," Nature Energy, Nature, vol. 7(9), pages 794-807, September.
    11. Jing Wang & Jie Zhang & Yingzhi Zhou & Hongbin Liu & Qifan Xue & Xiaosong Li & Chu-Chen Chueh & Hin-Lap Yip & Zonglong Zhu & Alex K. Y. Jen, 2020. "Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    12. Mingjie Li & Saikat Bhaumik & Teck Wee Goh & Muduli Subas Kumar & Natalia Yantara & Michael Grätzel & Subodh Mhaisalkar & Nripan Mathews & Tze Chien Sum, 2017. "Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junzhi Ye & Navendu Mondal & Ben P. Carwithen & Yunwei Zhang & Linjie Dai & Xiang-Bing Fan & Jian Mao & Zhiqiang Cui & Pratyush Ghosh & Clara Otero‐Martínez & Lars Turnhout & Yi-Teng Huang & Zhongzhen, 2024. "Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zuolin Zhang & Yinsu Feng & Jike Ding & Quanxing Ma & Hong Zhang & Jiajia Zhang & Mengjia Li & Taoran Geng & Wenhuan Gao & Yang Wang & Boxue Zhang & Thierry Pauporté & Jian-Xin Tang & Hongjian Chen & , 2025. "Rationally designed universal passivator for high-performance single-junction and tandem perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    3. Jun Nishida & Peter T. S. Chang & Jiselle Y. Ye & Prachi Sharma & Dylan M. Wharton & Samuel C. Johnson & Sean E. Shaheen & Markus B. Raschke, 2022. "Nanoscale heterogeneity of ultrafast many-body carrier dynamics in triple cation perovskites," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Pengju Shi & Bin Ding & Donger Jin & Muratcan Oner & Xu Zhang & Yuan Tian & Yahui Li & Ke Zhao & Zengyi Sun & Jiazhe Xu & Shaochen Zhang & Runchen Lai & Lingyu Xiao & Chenyue Wang & Caner Değer & Liuw, 2024. "Micro-homogeneity of lateral energy landscapes governs the performance in perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Shaobing Xiong & Fuyu Tian & Feng Wang & Aiping Cao & Zeng Chen & Sheng Jiang & Di Li & Bin Xu & Hongbo Wu & Yefan Zhang & Hongwei Qiao & Zaifei Ma & Jianxin Tang & Haiming Zhu & Yefeng Yao & Xianjie , 2024. "Reducing nonradiative recombination for highly efficient inverted perovskite solar cells via a synergistic bimolecular interface," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Yue Wang & Senyun Ye & Jia Wei Melvin Lim & David Giovanni & Minjun Feng & Jianhui Fu & Harish N S Krishnamoorthy & Qiannan Zhang & Qiang Xu & Rui Cai & Tze Chien Sum, 2023. "Carrier multiplication in perovskite solar cells with internal quantum efficiency exceeding 100%," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Yonglong Li & Yangxuan Gao & Zhijie Deng & Yutao Cao & Teng Wang & Ying Wang & Cancan Zhang & Mingjian Yuan & Wei Xie, 2023. "Visible-light-driven reversible shuttle vicinal dihalogenation using lead halide perovskite quantum dot catalysts," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Hao Zhang & Chenyang Tian & Ziqi Zhang & Meiling Xie & Jianqi Zhang & Lingyun Zhu & Zhixiang Wei, 2023. "Concretized structural evolution supported assembly-controlled film-forming kinetics in slot-die coated organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Yanan Shi & Yilin Chang & Kun Lu & Zhihao Chen & Jianqi Zhang & Yangjun Yan & Dingding Qiu & Yanan Liu & Muhammad Abdullah Adil & Wei Ma & Xiaotao Hao & Lingyun Zhu & Zhixiang Wei, 2022. "Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Wang, Zixuan & Chen, Zijian & Wang, Boyuan & Wu, Chuang & Zhou, Chao & Peng, Yang & Zhang, Xinyu & Ni, Zongming & Chung, Chi-yung & Chan, Ching-chuen & Yang, Jian & Zhao, Haitao, 2025. "Digital manufacturing of perovskite materials and solar cells," Applied Energy, Elsevier, vol. 377(PB).
    11. Zhen Wang & Yu Guo & Xianzhao Liu & Wenchao Shu & Guangchao Han & Kan Ding & Subhrangsu Mukherjee & Nan Zhang & Hin-Lap Yip & Yuanping Yi & Harald Ade & Philip C. Y. Chow, 2024. "The role of interfacial donor–acceptor percolation in efficient and stable all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Songhua Cai & Zhipeng Li & Yalan Zhang & Tanghao Liu & Peng Wang & Ming-Gang Ju & Shuping Pang & Shu Ping Lau & Xiao Cheng Zeng & Yuanyuan Zhou, 2024. "Intragrain impurity annihilation for highly efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Caixuan Wang & Xiaoming Ma & Dan Deng & Hao Zhang & Rui Sun & Jianqi Zhang & Lili Zhang & Mengying Wu & Jie Min & Zhi-Guo Zhang & Zhixiang Wei, 2024. "Giant dimeric donors for all-giant-oligomer organic solar cells with efficiency over 16% and superior photostability," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Xuemei Li & Wengang Huang & Andraž Krajnc & Yuwei Yang & Atul Shukla & Jaeho Lee & Mehri Ghasemi & Isaac Martens & Bun Chan & Dominique Appadoo & Peng Chen & Xiaoming Wen & Julian A. Steele & Haira G., 2023. "Interfacial alloying between lead halide perovskite crystals and hybrid glasses," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Nieto-Díaz, Balder A. & Crossland, Andrew F. & Groves, Christopher, 2021. "A levelized cost of energy approach to select and optimise emerging PV technologies: The relative impact of degradation, cost and initial efficiency," Applied Energy, Elsevier, vol. 299(C).
    16. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    17. Xiaoming Chang & Randi Azmi & Tinghuan Yang & Nan Wu & Sang Young Jeong & Herui Xi & Drajad Satrio Utomo & Badri Vishal & Furkan H. Isikgor & Hendrik Faber & Zhaoheng Ling & Mingjie He & Marco Marengo, 2025. "Solvent-dripping modulated 3D/2D heterostructures for high-performance perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    18. Liangliang Min & Haoxuan Sun & Linqi Guo & Meng Wang & Fengren Cao & Jun Zhong & Liang Li, 2024. "Frequency-selective perovskite photodetector for anti-interference optical communications," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Fangyuan Ye & Shuo Zhang & Jonathan Warby & Jiawei Wu & Emilio Gutierrez-Partida & Felix Lang & Sahil Shah & Elifnaz Saglamkaya & Bowen Sun & Fengshuo Zu & Safa Shoaee & Haifeng Wang & Burkhard Stille, 2022. "Overcoming C60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Raman, Rohith Kumar & Gurusamy Thangavelu, Senthil A. & Venkataraj, Selvaraj & Krishnamoorthy, Ananthanarayanan, 2021. "Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56060-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.