Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-020-17867-1
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiaofeng Huang & Dongdong Xia & Qian Xie & Deng Wang & Qian Li & Chaowei Zhao & Jun Yin & Fang Cao & Zhenhuang Su & Zixin Zeng & Wenlin Jiang & Werner Kaminsky & Kaikai Liu & Francis R. Lin & Qifan Fe, 2025. "Supramolecular force-driven non-fullerene acceptors as an electron-transporting layer for efficient inverted perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
- Hao Zhang & Chenyang Tian & Ziqi Zhang & Meiling Xie & Jianqi Zhang & Lingyun Zhu & Zhixiang Wei, 2023. "Concretized structural evolution supported assembly-controlled film-forming kinetics in slot-die coated organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Yanan Shi & Yilin Chang & Kun Lu & Zhihao Chen & Jianqi Zhang & Yangjun Yan & Dingding Qiu & Yanan Liu & Muhammad Abdullah Adil & Wei Ma & Xiaotao Hao & Lingyun Zhu & Zhixiang Wei, 2022. "Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Jinfeng Huang & Tianyi Chen & Le Mei & Mengting Wang & Yuxuan Zhu & Jiting Cui & Yanni Ouyang & Youwen Pan & Zhaozhao Bi & Wei Ma & Zaifei Ma & Haiming Zhu & Chunfeng Zhang & Xian-Kai Chen & Hongzheng, 2024. "On the role of asymmetric molecular geometry in high-performance organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Zhen Wang & Yu Guo & Xianzhao Liu & Wenchao Shu & Guangchao Han & Kan Ding & Subhrangsu Mukherjee & Nan Zhang & Hin-Lap Yip & Yuanping Yi & Harald Ade & Philip C. Y. Chow, 2024. "The role of interfacial donor–acceptor percolation in efficient and stable all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Yuanheng Wang & Jiajun Ren & Zhigang Shuai, 2023. "Minimizing non-radiative decay in molecular aggregates through control of excitonic coupling," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Sudhi Mahadevan & Taili Liu & Saied Md Pratik & Yuhao Li & Hang Yuen Ho & Shanchao Ouyang & Xinhui Lu & Hin-Lap Yip & Philip C. Y. Chow & Jean-Luc Brédas & Veaceslav Coropceanu & Shu Kong So & Sai-Win, 2024. "Assessing intra- and inter-molecular charge transfer excitations in non-fullerene acceptors using electroabsorption spectroscopy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17867-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.