IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-55941-8.html
   My bibliography  Save this article

Maternal asthma imprints fetal lung ILC2s via glucocorticoid signaling leading to worsened allergic airway inflammation in murine adult offspring

Author

Listed:
  • Tomoaki Takao

    (Kyushu University
    Kyushu University)

  • Ako Matsui

    (Kyushu University)

  • Chie Kikutake

    (Kyushu University)

  • Keiko Kan-o

    (Tokyo Women’s Medical University)

  • Azusa Inoue

    (RIKEN Center for Integrative Medical Sciences
    Tokyo Metropolitan University)

  • Mikita Suyama

    (Kyushu University)

  • Isamu Okamoto

    (Kyushu University)

  • Minako Ito

    (Kyushu University)

Abstract

The root of asthma can be linked to early life, with prenatal environments influencing risk. We investigate the effects of maternal asthma on the offspring’s lungs during fetal and adult life. Adult offspring of asthmatic mothers show an increase in lung group 2 innate lymphoid cell (ILC2) number and function with allergen-induced lung inflammation. Offspring of asthmatic mothers show phenotypic alteration of their lung ILC2s during fetal life, with increased expression of genes related to activation and glucocorticoid signaling. Furthermore, these offspring carry overlapping chromatin-accessible altered regions, including glucocorticoid receptor-binding regions in their lung ILC2s both at the fetal stage and adulthood, suggesting persistent prenatal epigenetic changes. Moreover, maternal exposure to glucocorticoids has similar effects on fetal lung ILC2s and contributes to allergen-induced lung inflammation during adulthood. Thus, asthma during pregnancy may have long-term effects on lung ILC2s in the offspring from the embryonic period, contributing to an increased risk of developing asthma.

Suggested Citation

  • Tomoaki Takao & Ako Matsui & Chie Kikutake & Keiko Kan-o & Azusa Inoue & Mikita Suyama & Isamu Okamoto & Minako Ito, 2025. "Maternal asthma imprints fetal lung ILC2s via glucocorticoid signaling leading to worsened allergic airway inflammation in murine adult offspring," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55941-8
    DOI: 10.1038/s41467-025-55941-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-55941-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-55941-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kazuyo Moro & Taketo Yamada & Masanobu Tanabe & Tsutomu Takeuchi & Tomokatsu Ikawa & Hiroshi Kawamoto & Jun-ichi Furusawa & Masashi Ohtani & Hideki Fujii & Shigeo Koyasu, 2010. "Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells," Nature, Nature, vol. 463(7280), pages 540-544, January.
    2. Haixu Xu & Xianfu Yi & Zhaohai Cui & Hui Li & Lin Zhu & Lijuan Zhang & JiaLe Chen & Xutong Fan & Pan Zhou & Mulin Jun Li & Ying Yu & Qiang Liu & Dandan Huang & Zhi Yao & Jie Zhou, 2023. "Maternal antibiotic exposure enhances ILC2 activation in neonates via downregulation of IFN1 signaling," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carys A. Croft & Anna Thaller & Solenne Marie & Jean-Marc Doisne & Laura Surace & Rui Yang & Anne Puel & Jacinta Bustamante & Jean-Laurent Casanova & James P. Santo, 2022. "Notch, RORC and IL-23 signals cooperate to promote multi-lineage human innate lymphoid cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Christophe M. Capelle & Séverine Ciré & Fanny Hedin & Maxime Hansen & Lukas Pavelka & Kamil Grzyb & Dimitrios Kyriakis & Oliver Hunewald & Maria Konstantinou & Dominique Revets & Vera Tslaf & Tainá M., 2023. "Early-to-mid stage idiopathic Parkinson’s disease shows enhanced cytotoxicity and differentiation in CD8 T-cells in females," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Yuying Huang & Lin Zhu & Shipeng Cheng & Ranran Dai & Chunrong Huang & Yanyan Song & Bo Peng & Xuezhen Li & Jing Wen & Yi Gong & Yunqian Hu & Ling Qian & Linyun Zhu & Fengying Zhang & Li Yu & Chunyan , 2023. "Solar ultraviolet B radiation promotes α-MSH secretion to attenuate the function of ILC2s via the pituitary–lung axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Karoline F. Troch & Manuel O. Jakob & Patrycja M. Forster & Katja J. Jarick & Jonathan Schreiber & Alexandra Preusser & Gabriela M. Guerra & Pawel Durek & Caroline Tizian & Nele Sterczyk & Sofia Helfr, 2024. "Group 2 innate lymphoid cells are a non-redundant source of interleukin-5 required for development and function of murine B1 cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Valeria Calcaterra & Matteo Vandoni & Virginia Rossi & Clarissa Berardo & Roberta Grazi & Erika Cordaro & Valeria Tranfaglia & Vittoria Carnevale Pellino & Cristina Cereda & Gianvincenzo Zuccotti, 2022. "Use of Physical Activity and Exercise to Reduce Inflammation in Children and Adolescents with Obesity," IJERPH, MDPI, vol. 19(11), pages 1-20, June.
    6. Jana H. Badrani & Allyssa N. Strohm & Lee Lacasa & Blake Civello & Kellen Cavagnero & Yung-An Haung & Michael Amadeo & Luay H. Naji & Sean J. Lund & Anthea Leng & Hyojoung Kim & Rachel E. Baum & Nasee, 2022. "RNA-binding protein RBM3 intrinsically suppresses lung innate lymphoid cell activation and inflammation partially through CysLT1R," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Kaifan Bao & Xiaoqun Gu & Yajun Song & Yijing Zhou & Yanyan Chen & Xi Yu & Weiyuan Yuan & Liyun Shi & Jie Zheng & Min Hong, 2024. "TCF-1 and TOX regulate the memory formation of intestinal group 2 innate lymphoid cells in asthma," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Dimitrii Pogorelov & Sebastian Felix Nepomuk Bode & Xin He & Javier Ramiro-Garcia & Fanny Hedin & Wim Ammerlaan & Maria Konstantinou & Christophe M. Capelle & Ni Zeng & Aurélie Poli & Olivia Domingues, 2024. "Multiomics approaches disclose very-early molecular and cellular switches during insect-venom allergen-specific immunotherapy: an observational study," Nature Communications, Nature, vol. 15(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55941-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.