IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-55905-y.html
   My bibliography  Save this article

Engineered hypoxia-responsive albumin nanoparticles mediating mitophagy regulation for cancer therapy

Author

Listed:
  • Wenyan Wang

    (Shenzhen Campus of Sun Yat-Sen University)

  • Shun-Yu Yao

    (Nankai University)

  • Jingjing Luo

    (Shenzhen Campus of Sun Yat-Sen University)

  • Chendi Ding

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Qili Huang

    (Shenzhen Campus of Sun Yat-Sen University)

  • Yao Yang

    (Shenzhen Campus of Sun Yat-Sen University)

  • Zhaoqing Shi

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Jiachan Lin

    (Shenzhen Campus of Sun Yat-Sen University)

  • Yu-Chen Pan

    (Nankai University)

  • Xiaowei Zeng

    (Shenzhen Campus of Sun Yat-Sen University)

  • Dong-Sheng Guo

    (Nankai University)

  • Hongzhong Chen

    (Shenzhen Campus of Sun Yat-Sen University)

Abstract

Hypoxic tumors present a significant challenge in cancer therapy due to their ability to adaptation in low-oxygen environments, which supports tumor survival and resistance to treatment. Enhanced mitophagy, the selective degradation of mitochondria by autophagy, is a crucial mechanism that helps sustain cellular homeostasis in hypoxic tumors. In this study, we develop an azocalix[4]arene-modified supramolecular albumin nanoparticle, that co-delivers hydroxychloroquine and a mitochondria-targeting photosensitizer, designed to induce cascaded oxidative stress by regulating mitophagy for the treatment of hypoxic tumors. These nanoparticles are hypoxia-responsive and release loaded guest molecules in hypoxic tumor cells. The released hydroxychloroquine disrupts the mitophagy process, thereby increasing oxidative stress and further weakening the tumor cells. Additionally, upon laser irradiation, the photosensitizer generates reactive oxygen species independent of oxygen, inducing mitochondria damage and mitophagy activation. The dual action of simultaneous spatiotemporal mitophagy activation and mitophagy flux blockade results in enhanced autophagic and oxidative stress, ultimately driving tumor cell death. Our work highlights the effectiveness of hydroxychloroquine-mediated mitophagy blockade combined with mitochondria-targeted photosensitizer for cascade-amplified oxidative stress against hypoxic tumors.

Suggested Citation

  • Wenyan Wang & Shun-Yu Yao & Jingjing Luo & Chendi Ding & Qili Huang & Yao Yang & Zhaoqing Shi & Jiachan Lin & Yu-Chen Pan & Xiaowei Zeng & Dong-Sheng Guo & Hongzhong Chen, 2025. "Engineered hypoxia-responsive albumin nanoparticles mediating mitophagy regulation for cancer therapy," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55905-y
    DOI: 10.1038/s41467-025-55905-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-55905-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-55905-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Juan-Juan Li & Yuqing Hu & Bing Hu & Wenbo Wang & Haiqi Xu & Xin-Yue Hu & Fei Ding & Hua-Bin Li & Ke-Rang Wang & Xinge Zhang & Dong-Sheng Guo, 2022. "Lactose azocalixarene drug delivery system for the treatment of multidrug-resistant pseudomonas aeruginosa infected diabetic ulcer," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Jing An & Shanliang Tang & Gaobo Hong & Wenlong Chen & Miaomiao Chen & Jitao Song & Zhiliang Li & Xiaojun Peng & Fengling Song & Wen-Heng Zheng, 2022. "An unexpected strategy to alleviate hypoxia limitation of photodynamic therapy by biotinylation of photosensitizers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Dongdong Wang & Jiawei Liu & Changlai Wang & Weiyun Zhang & Guangbao Yang & Yun Chen & Xiaodong Zhang & Yinglong Wu & Long Gu & Hongzhong Chen & Wei Yuan & Xiaokai Chen & Guofeng Liu & Bin Gao & Qianw, 2023. "Microbial synthesis of Prussian blue for potentiating checkpoint blockade immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Zhaoqing Shi & Miaomiao Luo & Qili Huang & Chendi Ding & Wenyan Wang & Yinglong Wu & Jingjing Luo & Chuchu Lin & Ting Chen & Xiaowei Zeng & Lin Mei & Yanli Zhao & Hongzhong Chen, 2023. "NIR-dye bridged human serum albumin reassemblies for effective photothermal therapy of tumor," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Ying Ji & Xiangsheng Liu & Juan Li & Xiaodong Xie & Max Huang & Jinhong Jiang & Yu-Pei Liao & Timothy Donahue & Huan Meng, 2020. "Use of ratiometrically designed nanocarrier targeting CDK4/6 and autophagy pathways for effective pancreatic cancer treatment," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    6. Jian-Shuang Guo & Juan-Juan Li & Ze-Han Wang & Yang Liu & Yu-Xin Yue & Hua-Bin Li & Xiu-He Zhao & Yuan-Jun Sun & Ya-Hui Ding & Fei Ding & Dong-Sheng Guo & Liang Wang & Yue Chen, 2023. "Dual hypoxia-responsive supramolecular complex for cancer target therapy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiahao Zhuang & Guobin Qi & Yecheng Feng & Min Wu & Hang Zhang & Dandan Wang & Xianhe Zhang & Kok Chan Chong & Bowen Li & Shitai Liu & Jianwu Tian & Yi Shan & Duo Mao & Bin Liu, 2024. "Thymoquinone as an electron transfer mediator to convert Type II photosensitizers to Type I photosensitizers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Bowen Li & Jianwu Tian & Fu Zhang & Chongzhi Wu & Zhiyao Li & Dandan Wang & Jiahao Zhuang & Siqin Chen & Wentao Song & Yufu Tang & Yuan Ping & Bin Liu, 2024. "Self-assembled aldehyde dehydrogenase-activatable nano-prodrug for cancer stem cell-enriched tumor detection and treatment," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Yufu Tang & Yuanyuan Li & Bowen Li & Wentao Song & Guobin Qi & Jianwu Tian & Wei Huang & Quli Fan & Bin Liu, 2024. "Oxygen-independent organic photosensitizer with ultralow-power NIR photoexcitation for tumor-specific photodynamic therapy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Wenping Zhu & Ying Li & Shaoxun Guo & Wu-Jie Guo & Tuokai Peng & Hui Li & Bin Liu & Hui-Qing Peng & Ben Zhong Tang, 2022. "Stereoisomeric engineering of aggregation-induced emission photosensitizers towards fungal killing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Hao Liu & Ziqing Li & Xiaojun Zhang & Yihui Xu & Guoyan Tang & Zhaoxin Wang & Yuan-Yuan Zhao & Mei-Rong Ke & Bi-Yuan Zheng & Shuping Huang & Jian-Dong Huang & Xingshu Li, 2025. "Phthalocyanine aggregates as semiconductor-like photocatalysts for hypoxic-tumor photodynamic immunotherapy," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    6. Kun-Xu Teng & Li-Ya Niu & Nan Xie & Qing-Zheng Yang, 2022. "Supramolecular photodynamic agents for simultaneous oxidation of NADH and generation of superoxide radical," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Zhao Zhang & Zixiang Wei & Jintong Guo & Jinxiao Lyu & Bingzhe Wang & Gang Wang & Chunfei Wang & Liqiang Zhou & Zhen Yuan & Guichuan Xing & Changfeng Wu & Xuanjun Zhang, 2024. "Metallopolymer strategy to explore hypoxic active narrow-bandgap photosensitizers for effective cancer photodynamic therapy," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Yibin Li & Fei Qu & Fang Wan & Cheng Zhong & Jingyi Rao & Yijing Liu & Zhen Li & Jintao Zhu & Zhong’an Li, 2025. "Aggregation control of anionic pentamethine cyanine enabling excitation wavelength selective NIR-II fluorescence imaging-guided photodynamic therapy," Nature Communications, Nature, vol. 16(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55905-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.