Author
Listed:
- Wenyan Wang
(Shenzhen Campus of Sun Yat-Sen University)
- Shun-Yu Yao
(Nankai University)
- Jingjing Luo
(Shenzhen Campus of Sun Yat-Sen University)
- Chendi Ding
(Chinese Academy of Medical Sciences and Peking Union Medical College)
- Qili Huang
(Shenzhen Campus of Sun Yat-Sen University)
- Yao Yang
(Shenzhen Campus of Sun Yat-Sen University)
- Zhaoqing Shi
(Chinese Academy of Medical Sciences and Peking Union Medical College)
- Jiachan Lin
(Shenzhen Campus of Sun Yat-Sen University)
- Yu-Chen Pan
(Nankai University)
- Xiaowei Zeng
(Shenzhen Campus of Sun Yat-Sen University)
- Dong-Sheng Guo
(Nankai University)
- Hongzhong Chen
(Shenzhen Campus of Sun Yat-Sen University)
Abstract
Hypoxic tumors present a significant challenge in cancer therapy due to their ability to adaptation in low-oxygen environments, which supports tumor survival and resistance to treatment. Enhanced mitophagy, the selective degradation of mitochondria by autophagy, is a crucial mechanism that helps sustain cellular homeostasis in hypoxic tumors. In this study, we develop an azocalix[4]arene-modified supramolecular albumin nanoparticle, that co-delivers hydroxychloroquine and a mitochondria-targeting photosensitizer, designed to induce cascaded oxidative stress by regulating mitophagy for the treatment of hypoxic tumors. These nanoparticles are hypoxia-responsive and release loaded guest molecules in hypoxic tumor cells. The released hydroxychloroquine disrupts the mitophagy process, thereby increasing oxidative stress and further weakening the tumor cells. Additionally, upon laser irradiation, the photosensitizer generates reactive oxygen species independent of oxygen, inducing mitochondria damage and mitophagy activation. The dual action of simultaneous spatiotemporal mitophagy activation and mitophagy flux blockade results in enhanced autophagic and oxidative stress, ultimately driving tumor cell death. Our work highlights the effectiveness of hydroxychloroquine-mediated mitophagy blockade combined with mitochondria-targeted photosensitizer for cascade-amplified oxidative stress against hypoxic tumors.
Suggested Citation
Wenyan Wang & Shun-Yu Yao & Jingjing Luo & Chendi Ding & Qili Huang & Yao Yang & Zhaoqing Shi & Jiachan Lin & Yu-Chen Pan & Xiaowei Zeng & Dong-Sheng Guo & Hongzhong Chen, 2025.
"Engineered hypoxia-responsive albumin nanoparticles mediating mitophagy regulation for cancer therapy,"
Nature Communications, Nature, vol. 16(1), pages 1-22, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55905-y
DOI: 10.1038/s41467-025-55905-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55905-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.