IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55645-5.html
   My bibliography  Save this article

Programming scheduled self-assembly of circadian materials

Author

Listed:
  • Gregor Leech

    (University of San Diego)

  • Lauren Melcher

    (Rochester Institute of Technology)

  • Michelle Chiu

    (University of Chicago)

  • Maya Nugent

    (University of San Diego)

  • Shirlaine Juliano

    (University of San Diego)

  • Lily Burton

    (University of Chicago)

  • Janet Kang

    (University of Chicago)

  • Soo Ji Kim

    (University of Chicago)

  • Sourav Roy

    (Syracuse University)

  • Leila Farhadi

    (Syracuse University)

  • Jennifer L. Ross

    (Syracuse University)

  • Moumita Das

    (Rochester Institute of Technology
    Rochester Institute of Technology)

  • Michael J. Rust

    (University of Chicago)

  • Rae M. Robertson-Anderson

    (University of San Diego)

Abstract

Active biological molecules present a powerful, yet largely untapped, opportunity to impart autonomous regulation of materials. Because these systems can function robustly to regulate when and where chemical reactions occur, they have the ability to bring complex, life-like behavior to synthetic materials. Here, we achieve this design feat by using functionalized circadian clock proteins, KaiB and KaiC, to engineer time-dependent crosslinking of colloids. The resulting material self-assembles with programmable kinetics, producing macroscopic changes in material properties, via molecular assembly of KaiB-KaiC complexes. We show that colloid crosslinking depends strictly on the phosphorylation state of KaiC, with kinetics that are synced with KaiB-KaiC complexing. Our microscopic image analyses and computational models indicate that the stability of colloidal super-structures depends sensitively on the number of Kai complexes per colloid connection. Consistent with our model predictions, a high concentration stabilizes the material against dissolution after a robust self-assembly phase, while a low concentration allows for oscillatory material structure. This work introduces the concept of harnessing biological timers to control synthetic materials; and, more generally, opens the door to using protein-based reaction networks to endow synthetic systems with life-like functional properties.

Suggested Citation

  • Gregor Leech & Lauren Melcher & Michelle Chiu & Maya Nugent & Shirlaine Juliano & Lily Burton & Janet Kang & Soo Ji Kim & Sourav Roy & Leila Farhadi & Jennifer L. Ross & Moumita Das & Michael J. Rust , 2025. "Programming scheduled self-assembly of circadian materials," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55645-5
    DOI: 10.1038/s41467-024-55645-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55645-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55645-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Song Liu & Suraj Shankar & M. Cristina Marchetti & Yilin Wu, 2021. "Viscoelastic control of spatiotemporal order in bacterial active matter," Nature, Nature, vol. 590(7844), pages 80-84, February.
    2. Tetsuya Mori & Shogo Sugiyama & Mark Byrne & Carl Hirschie Johnson & Takayuki Uchihashi & Toshio Ando, 2018. "Revealing circadian mechanisms of integration and resilience by visualizing clock proteins working in real time," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Naohiro Kawamoto & Hiroshi Ito & Isao T. Tokuda & Hideo Iwasaki, 2020. "Damped circadian oscillation in the absence of KaiA in Synechococcus," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Sierra M. Brooks & Hal S. Alper, 2021. "Applications, challenges, and needs for employing synthetic biology beyond the lab," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Tang & Jennifer Kuzma & Xi Zhang & Xinyu Song & Yin Li & Hongxu Liu & Guangyuan Hu, 2023. "Synthetic biology and governance research in China: a 40-year evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5293-5310, September.
    2. Bibi Najma & Minu Varghese & Lev Tsidilkovski & Linnea Lemma & Aparna Baskaran & Guillaume Duclos, 2022. "Competing instabilities reveal how to rationally design and control active crosslinked gels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Debika Datta & Elliot L. Weiss & Daniel Wangpraseurt & Erica Hild & Shaochen Chen & James W. Golden & Susan S. Golden & Jonathan K. Pokorski, 2023. "Phenotypically complex living materials containing engineered cyanobacteria," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Sierra M. Brooks & Celeste Marsan & Kevin B. Reed & Shuo-Fu Yuan & Dustin-Dat Nguyen & Adit Trivedi & Gokce Altin-Yavuzarslan & Nathan Ballinger & Alshakim Nelson & Hal S. Alper, 2023. "A tripartite microbial co-culture system for de novo biosynthesis of diverse plant phenylpropanoids," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Chongbin Zheng & Evelyn Tang, 2024. "A topological mechanism for robust and efficient global oscillations in biological networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Japinder Nijjer & Changhao Li & Qiuting Zhang & Haoran Lu & Sulin Zhang & Jing Yan, 2021. "Mechanical forces drive a reorientation cascade leading to biofilm self-patterning," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Anindita Bandyopadhyay & Annesha Sengupta & Thanura Elvitigala & Himadri B. Pakrasi, 2024. "Endogenous clock-mediated regulation of intracellular oxygen dynamics is essential for diazotrophic growth of unicellular cyanobacteria," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55645-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.