IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.04986.html
   My bibliography  Save this paper

Epidemic Modeling with Generative Agents

Author

Listed:
  • Ross Williams
  • Niyousha Hosseinichimeh
  • Aritra Majumdar
  • Navid Ghaffarzadegan

Abstract

This study offers a new paradigm of individual-level modeling to address the grand challenge of incorporating human behavior in epidemic models. Using generative artificial intelligence in an agent-based epidemic model, each agent is empowered to make its own reasonings and decisions via connecting to a large language model such as ChatGPT. Through various simulation experiments, we present compelling evidence that generative agents mimic real-world behaviors such as quarantining when sick and self-isolation when cases rise. Collectively, the agents demonstrate patterns akin to multiple waves observed in recent pandemics followed by an endemic period. Moreover, the agents successfully flatten the epidemic curve. This study creates potential to improve dynamic system modeling by offering a way to represent human brain, reasoning, and decision making.

Suggested Citation

  • Ross Williams & Niyousha Hosseinichimeh & Aritra Majumdar & Navid Ghaffarzadegan, 2023. "Epidemic Modeling with Generative Agents," Papers 2307.04986, arXiv.org.
  • Handle: RePEc:arx:papers:2307.04986
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.04986
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen Gao & Xiaochong Lan & Nian Li & Yuan Yuan & Jingtao Ding & Zhilun Zhou & Fengli Xu & Yong Li, 2024. "Large language models empowered agent-based modeling and simulation: a survey and perspectives," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-24, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.04986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.