IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55396-3.html
   My bibliography  Save this article

Structural basis of human VANGL-PRICKLE interaction

Author

Listed:
  • Yanyi Song

    (Peking University)

  • Shuyi Jian

    (Peking University)

  • Junlin Teng

    (Peking University)

  • Pengli Zheng

    (Peking University
    Peking University)

  • Zhe Zhang

    (Peking University
    Peking University
    Peking University)

Abstract

Planar cell polarity (PCP) is an evolutionarily conserved process for development and morphogenesis in metazoans. The well-organized polarity pattern in cells is established by the asymmetric distribution of two core protein complexes on opposite sides of the cell membrane. The Van Gogh-like (VANGL)-PRICKLE (PK) pair is one of these two key regulators; however, their structural information and detailed functions have been unclear. Here, we present five cryo-electron microscopy structures of human VANGL1, VANGL2, and their complexes with PK1 at resolutions of 2.2–3.0 Å. Through biochemical and cell imaging experiments, we decipher the molecular details of the VANGL-PK interaction. Furthermore, we reveal that PK1 can target VANGL-containing intracellular vesicles to the peripheral cell membrane. These findings provide a solid foundation to understand the explicit interaction between VANGL and PK while opening new avenues for subsequent studies of the PCP pathway.

Suggested Citation

  • Yanyi Song & Shuyi Jian & Junlin Teng & Pengli Zheng & Zhe Zhang, 2025. "Structural basis of human VANGL-PRICKLE interaction," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55396-3
    DOI: 10.1038/s41467-024-55396-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55396-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55396-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carl-Philipp Heisenberg & Masazumi Tada & Gerd-Jörg Rauch & Leonor Saúde & Miguel L. Concha & Robert Geisler & Derek L. Stemple & James C. Smith & Stephen W. Wilson, 2000. "Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation," Nature, Nature, vol. 405(6782), pages 76-81, May.
    2. Karl Zhanghao & Xingye Chen & Wenhui Liu & Meiqi Li & Yiqiong Liu & Yiming Wang & Sha Luo & Xiao Wang & Chunyan Shan & Hao Xie & Juntao Gao & Xiaowei Chen & Dayong Jin & Xiangdong Li & Yan Zhang & Qio, 2019. "Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Mireille Montcouquiol & Rivka A. Rachel & Pamela J. Lanford & Neal G. Copeland & Nancy A. Jenkins & Matthew W. Kelley, 2003. "Identification of Vangl2 and Scrb1 as planar polarity genes in mammals," Nature, Nature, vol. 423(6936), pages 173-177, May.
    4. Jérôme Gros & Olivier Serralbo & Christophe Marcelle, 2009. "WNT11 acts as a directional cue to organize the elongation of early muscle fibres," Nature, Nature, vol. 457(7229), pages 589-593, January.
    5. Josh Abramson & Jonas Adler & Jack Dunger & Richard Evans & Tim Green & Alexander Pritzel & Olaf Ronneberger & Lindsay Willmore & Andrew J. Ballard & Joshua Bambrick & Sebastian W. Bodenstein & David , 2024. "Accurate structure prediction of biomolecular interactions with AlphaFold 3," Nature, Nature, vol. 630(8016), pages 493-500, June.
    6. David I. Strutt & Ursula Weber & Marek Mlodzik, 1997. "The role of RhoA in tissue polarity and Frizzled signalling," Nature, Nature, vol. 387(6630), pages 292-295, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan Zhang & Shaobai Li & Hao Wu & Shanshuang Chen, 2025. "Cryo-EM structure and oligomerization of the human planar cell polarity core protein Vangl1," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Alice Peysson & Noura Zariohi & Marie Gendrel & Amandine Chambert-Loir & Noémie Frébault & Elise Cheynet & Olga Andrini & Thomas Boulin, 2024. "Wnt-Ror-Dvl signalling and the dystrophin complex organize planar-polarized membrane compartments in C. elegans muscles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Qianqian Ming & Daniel Antfolk & David A. Price & Anna Manturova & Elliot Medina & Srishti Singh & Charlotte Mason & Timothy H. Tran & Keiran S. M. Smalley & Daisy W. Leung & Vincent C. Luca, 2024. "Structural basis for mouse LAG3 interactions with the MHC class II molecule I-Ab," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Itxaso Anso & Samira Zouhir & Thibault Géry Sana & Petya Violinova Krasteva, 2024. "Structural basis for synthase activation and cellulose modification in the E. coli Type II Bcs secretion system," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Xuhang Lu & Dongmei Li & Yaojie Wang & Gaohua Zhang & Tianlei Wen & Yue Lu & Nan Jia & Xuedi Wang & Shenghai Chang & Xing Zhang & Jianping Lin & Yu-hang Chen & Xue Yang & Yuequan Shen, 2025. "Structural insights into the activation mechanism of the human zinc-activated channel," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    6. Paloma García Casas & Michela Rossini & Linnea Påvénius & Mezida Saeed & Nikita Arnst & Sonia Sonda & Tânia Fernandes & Irene D’Arsiè & Matteo Bruzzone & Valeria Berno & Andrea Raimondi & Maria Livia , 2024. "Simultaneous detection of membrane contact dynamics and associated Ca2+ signals by reversible chemogenetic reporters," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    7. Jidong Fei & Dongdong Zhao & Caiyi Pang & Ju Li & Siwei Li & Wentao Qiao & Juan Tan & Changhao Bi & Xueli Zhang, 2025. "Mismatch prime editing gRNA increased efficiency and reduced indels," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    8. Cornelia Sala & Martin Würtz & Enrico Salvatore Atorino & Annett Neuner & Patrick Partscht & Thomas Hoffmann & Sebastian Eustermann & Elmar Schiebel, 2024. "An interaction network of inner centriole proteins organised by POC1A-POC1B heterodimer crosslinks ensures centriolar integrity," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. Yannick Weyer & Sinead I. Schwabl & Xuechen Tang & Astha Purwar & Konstantin Siegmann & Angela Ruepp & Theresia Dunzendorfer-Matt & Michael A. Widerin & Veronika Niedrist & Noa J. M. Mutsters & Maria , 2024. "The Dsc ubiquitin ligase complex identifies transmembrane degrons to degrade orphaned proteins at the Golgi," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Jianan Zhang & Yuko Tsutsui & Hengyi Li & Tongqing Li & Yueyue Wang & Salma Laraki & Sofia Alarcon-Frias & Steven E. Stayrook & Daryl E. Klein, 2025. "Structural basis for the interaction between the Drosophila RTK Sevenless (dROS1) and the GPCR BOSS," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    11. Huiyu Cai & Zuobai Zhang & Mingkai Wang & Bozitao Zhong & Quanxiao Li & Yuxuan Zhong & Yanling Wu & Tianlei Ying & Jian Tang, 2024. "Pretrainable geometric graph neural network for antibody affinity maturation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Anete Romanauska & Edvinas Stankunas & Maya Schuldiner & Alwin Köhler, 2024. "Seipin governs phosphatidic acid homeostasis at the inner nuclear membrane," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Timothy K. Soh & Sofia Ognibene & Saskia Sanders & Robin Schäper & Benedikt B. Kaufer & Jens B. Bosse, 2024. "A proteome-wide structural systems approach reveals insights into protein families of all human herpesviruses," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Nathalie Béchon & Nitzan Tal & Avigail Stokar-Avihail & Alon Savidor & Meital Kupervaser & Sarah Melamed & Gil Amitai & Rotem Sorek, 2024. "Diversification of molecular pattern recognition in bacterial NLR-like proteins," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Jason Saba & Katia Flores & Bailey Marshall & Michael D. Engstrom & Yikai Peng & Atharv S. Garje & Laurie E. Comstock & Robert Landick, 2024. "Bacteroides expand the functional versatility of a conserved transcription factor and transcribed DNA to program capsule diversity," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Amika Singla & Daniel J. Boesch & Ho Yee Joyce Fung & Chigozie Ngoka & Avery S. Enriquez & Ran Song & Daniel A. Kramer & Yan Han & Esther Banarer & Andrew Lemoff & Puneet Juneja & Daniel D. Billadeau , 2024. "Structural basis for Retriever-SNX17 assembly and endosomal sorting," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    17. Sanghyeon Choi & Youngjin Lee & Shinhye Park & Song Yee Jang & Jongbin Park & Do Won Oh & Su-Man Kim & Tae-Hwan Kim & Ga Seul Lee & Changyi Cho & Byoung Sik Kim & Donghan Lee & Eun-Hee Kim & Hae-Kap C, 2024. "Dissemination of pathogenic bacteria is reinforced by a MARTX toxin effector duet," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    18. Yida Jiang & Xinghe Zhang & Honggang Nie & Jianxiong Fan & Shuangshuang Di & Hui Fu & Xiu Zhang & Lijuan Wang & Chun Tang, 2024. "Dissecting diazirine photo-reaction mechanism for protein residue-specific cross-linking and distance mapping," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Xiaoting Shan & Ying Cai & Binyu Zhu & Lingli Zhou & Xujie Sun & Xiaoxuan Xu & Qi Yin & Dangge Wang & Yaping Li, 2024. "Rational strategies for improving the efficiency of design and discovery of nanomedicines," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Yinghui Chen & Yunxin Xu & Di Liu & Yaoguang Xing & Haipeng Gong, 2024. "An end-to-end framework for the prediction of protein structure and fitness from single sequence," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55396-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.