IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49154-8.html
   My bibliography  Save this article

Wnt-Ror-Dvl signalling and the dystrophin complex organize planar-polarized membrane compartments in C. elegans muscles

Author

Listed:
  • Alice Peysson

    (MeLiS)

  • Noura Zariohi

    (MeLiS)

  • Marie Gendrel

    (Université Paris Sciences et Lettres Research University)

  • Amandine Chambert-Loir

    (MeLiS)

  • Noémie Frébault

    (MeLiS)

  • Elise Cheynet

    (MeLiS)

  • Olga Andrini

    (MeLiS)

  • Thomas Boulin

    (MeLiS)

Abstract

Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that –while it is essentially in place by the end of embryogenesis– muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.

Suggested Citation

  • Alice Peysson & Noura Zariohi & Marie Gendrel & Amandine Chambert-Loir & Noémie Frébault & Elise Cheynet & Olga Andrini & Thomas Boulin, 2024. "Wnt-Ror-Dvl signalling and the dystrophin complex organize planar-polarized membrane compartments in C. elegans muscles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49154-8
    DOI: 10.1038/s41467-024-49154-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49154-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49154-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mireille Montcouquiol & Rivka A. Rachel & Pamela J. Lanford & Neal G. Copeland & Nancy A. Jenkins & Matthew W. Kelley, 2003. "Identification of Vangl2 and Scrb1 as planar polarity genes in mammals," Nature, Nature, vol. 423(6936), pages 173-177, May.
    2. Marten Postma & Joachim Goedhart, 2019. "PlotsOfData—A web app for visualizing data together with their summaries," PLOS Biology, Public Library of Science, vol. 17(3), pages 1-8, March.
    3. Raj N. Sewduth & Béatrice Jaspard-Vinassa & Claire Peghaire & Aude Guillabert & Nathalie Franzl & Frederic Larrieu-Lahargue & Catherine Moreau & Marcus Fruttiger & Pascale Dufourcq & Thierry Couffinha, 2014. "The ubiquitin ligase PDZRN3 is required for vascular morphogenesis through Wnt/planar cell polarity signalling," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    4. Ismail Soussia & Sonia El Mouridi & Dawon Kang & Alice Leclercq-Blondel & Lamyaa Khoubza & Philippe Tardy & Nora Zariohi & Marie Gendrel & Florian Lesage & Eun-Jin Kim & Delphine Bichet & Olga Andrini, 2019. "Mutation of a single residue promotes gating of vertebrate and invertebrate two-pore domain potassium channels," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp A. M. Schmidpeter & John T. Petroff & Leila Khajoueinejad & Aboubacar Wague & Cheryl Frankfater & Wayland W. L. Cheng & Crina M. Nimigean & Paul M. Riegelhaupt, 2023. "Membrane phospholipids control gating of the mechanosensitive potassium leak channel TREK1," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Bill Söderström & Matthew J. Pittorino & Daniel O. Daley & Iain G. Duggin, 2022. "Assembly dynamics of FtsZ and DamX during infection-related filamentation and division in uropathogenic E. coli," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Heather Schiller & Yirui Hong & Joshua Kouassi & Theopi Rados & Jasmin Kwak & Anthony DiLucido & Daniel Safer & Anita Marchfelder & Friedhelm Pfeiffer & Alexandre Bisson & Stefan Schulze & Mechthild P, 2024. "Identification of structural and regulatory cell-shape determinants in Haloferax volcanii," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Frederic Li Mow Chee & Bruno Beernaert & Billie G. C. Griffith & Alexander E. P. Loftus & Yatendra Kumar & Jimi C. Wills & Martin Lee & Jessica Valli & Ann P. Wheeler & J. Douglas Armstrong & Maddy Pa, 2023. "Mena regulates nesprin-2 to control actin–nuclear lamina associations, trans-nuclear membrane signalling and gene expression," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Adam Byron & Billie G. C. Griffith & Ana Herrero & Alexander E. P. Loftus & Emma S. Koeleman & Linda Kogerman & John C. Dawson & Niamh McGivern & Jayne Culley & Graeme R. Grimes & Bryan Serrels & Alex, 2022. "Characterisation of a nucleo-adhesome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Toby S. Turney & Vivian Li & Stephen G. Brohawn, 2022. "Structural Basis for pH-gating of the K+ channel TWIK1 at the selectivity filter," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Joachim Goedhart, 2020. "PlotTwist: A web app for plotting and annotating continuous data," PLOS Biology, Public Library of Science, vol. 18(1), pages 1-10, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49154-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.