IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51563-8.html
   My bibliography  Save this article

Pretrainable geometric graph neural network for antibody affinity maturation

Author

Listed:
  • Huiyu Cai

    (BioGeometry
    Mila-Québec AI Institute
    Université de Montréal)

  • Zuobai Zhang

    (Mila-Québec AI Institute
    Université de Montréal)

  • Mingkai Wang

    (Fudan University
    Fudan University)

  • Bozitao Zhong

    (Mila-Québec AI Institute
    Université de Montréal)

  • Quanxiao Li

    (Fudan University
    Fudan University)

  • Yuxuan Zhong

    (Fudan University
    Fudan University)

  • Yanling Wu

    (Fudan University
    Fudan University)

  • Tianlei Ying

    (Fudan University
    Fudan University)

  • Jian Tang

    (BioGeometry
    Mila-Québec AI Institute
    HEC Montréal)

Abstract

Increasing the binding affinity of an antibody to its target antigen is a crucial task in antibody therapeutics development. This paper presents a pretrainable geometric graph neural network, GearBind, and explores its potential in in silico affinity maturation. Leveraging multi-relational graph construction, multi-level geometric message passing and contrastive pretraining on mass-scale, unlabeled protein structural data, GearBind outperforms previous state-of-the-art approaches on SKEMPI and an independent test set. A powerful ensemble model based on GearBind is then derived and used to successfully enhance the binding of two antibodies with distinct formats and target antigens. ELISA EC50 values of the designed antibody mutants are decreased by up to 17 fold, and KD values by up to 6.1 fold. These promising results underscore the utility of geometric deep learning and effective pretraining in macromolecule interaction modeling tasks.

Suggested Citation

  • Huiyu Cai & Zuobai Zhang & Mingkai Wang & Bozitao Zhong & Quanxiao Li & Yuxuan Zhong & Yanling Wu & Tianlei Ying & Jian Tang, 2024. "Pretrainable geometric graph neural network for antibody affinity maturation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51563-8
    DOI: 10.1038/s41467-024-51563-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51563-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51563-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Josh Abramson & Jonas Adler & Jack Dunger & Richard Evans & Tim Green & Alexander Pritzel & Olaf Ronneberger & Lindsay Willmore & Andrew J. Ballard & Joshua Bambrick & Sebastian W. Bodenstein & David , 2024. "Accurate structure prediction of biomolecular interactions with AlphaFold 3," Nature, Nature, vol. 630(8016), pages 493-500, June.
    3. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianqian Ming & Daniel Antfolk & David A. Price & Anna Manturova & Elliot Medina & Srishti Singh & Charlotte Mason & Timothy H. Tran & Keiran S. M. Smalley & Daisy W. Leung & Vincent C. Luca, 2024. "Structural basis for mouse LAG3 interactions with the MHC class II molecule I-Ab," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Paloma García Casas & Michela Rossini & Linnea Påvénius & Mezida Saeed & Nikita Arnst & Sonia Sonda & Tânia Fernandes & Irene D’Arsiè & Matteo Bruzzone & Valeria Berno & Andrea Raimondi & Maria Livia , 2024. "Simultaneous detection of membrane contact dynamics and associated Ca2+ signals by reversible chemogenetic reporters," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Cornelia Sala & Martin Würtz & Enrico Salvatore Atorino & Annett Neuner & Patrick Partscht & Thomas Hoffmann & Sebastian Eustermann & Elmar Schiebel, 2024. "An interaction network of inner centriole proteins organised by POC1A-POC1B heterodimer crosslinks ensures centriolar integrity," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Timothy K. Soh & Sofia Ognibene & Saskia Sanders & Robin Schäper & Benedikt B. Kaufer & Jens B. Bosse, 2024. "A proteome-wide structural systems approach reveals insights into protein families of all human herpesviruses," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Nathalie Béchon & Nitzan Tal & Avigail Stokar-Avihail & Alon Savidor & Meital Kupervaser & Sarah Melamed & Gil Amitai & Rotem Sorek, 2024. "Diversification of molecular pattern recognition in bacterial NLR-like proteins," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Amika Singla & Daniel J. Boesch & Ho Yee Joyce Fung & Chigozie Ngoka & Avery S. Enriquez & Ran Song & Daniel A. Kramer & Yan Han & Esther Banarer & Andrew Lemoff & Puneet Juneja & Daniel D. Billadeau , 2024. "Structural basis for Retriever-SNX17 assembly and endosomal sorting," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Yinghui Chen & Yunxin Xu & Di Liu & Yaoguang Xing & Haipeng Gong, 2024. "An end-to-end framework for the prediction of protein structure and fitness from single sequence," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Kehan Wu & Yingce Xia & Pan Deng & Renhe Liu & Yuan Zhang & Han Guo & Yumeng Cui & Qizhi Pei & Lijun Wu & Shufang Xie & Si Chen & Xi Lu & Song Hu & Jinzhi Wu & Chi-Kin Chan & Shawn Chen & Liangliang Z, 2024. "TamGen: drug design with target-aware molecule generation through a chemical language model," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Michael Kugler & Felix J. Metzner & Gregor Witte & Karl-Peter Hopfner & Katja Lammens, 2024. "Phosphorylation-mediated conformational change regulates human SLFN11," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Helena E. Sverak & Luke N. Yaeger & Liam J. Worrall & Condurache M. Vacariu & Amy J. Glenwright & Marija Vuckovic & Zayni-Dean Al Azawi & Ryan P. Lamers & Victoria A. Marko & Clarissa Skorupski & Arvi, 2024. "Cryo-EM characterization of the anydromuropeptide permease AmpG central to bacterial fitness and β-lactam antibiotic resistance," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Marius Klein & Klemens Wild & Irmgard Sinning, 2024. "Multi-protein assemblies orchestrate co-translational enzymatic processing on the human ribosome," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Kenneth Bødkter Schou & Samuel Mandacaru & Muhammad Tahir & Nikola Tom & Ann-Sofie Nilsson & Jens S. Andersen & Matteo Tiberti & Elena Papaleo & Jiri Bartek, 2024. "Exploring the structural landscape of DNA maintenance proteins," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    17. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51563-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.