IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v405y2000i6782d10.1038_35011068.html
   My bibliography  Save this article

Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation

Author

Listed:
  • Carl-Philipp Heisenberg

    (University College London)

  • Masazumi Tada

    (Division of Developmental Biology National Institute for Medical Research)

  • Gerd-Jörg Rauch

    (Max-Planck-Institut für Entwicklungsbiologie)

  • Leonor Saúde

    (Division of Developmental Biology National Institute for Medical Research)

  • Miguel L. Concha

    (University College London)

  • Robert Geisler

    (Max-Planck-Institut für Entwicklungsbiologie)

  • Derek L. Stemple

    (Division of Developmental Biology National Institute for Medical Research)

  • James C. Smith

    (Division of Developmental Biology National Institute for Medical Research)

  • Stephen W. Wilson

    (University College London)

Abstract

Vertebrate gastrulation involves the specification and coordinated movement of large populations of cells that give rise to the ectodermal, mesodermal and endodermal germ layers. Although many of the genes involved in the specification of cell identity during this process have been identified, little is known of the genes that coordinate cell movement. Here we show that the zebrafish silberblick (slb) locus1 encodes Wnt11 and that Slb/Wnt11 activity is required for cells to undergo correct convergent extension movements during gastrulation. In the absence of Slb/Wnt11 function, abnormal extension of axial tissue results in cyclopia and other midline defects in the head2. The requirement for Slb/Wnt11 is cell non-autonomous, and our results indicate that the correct extension of axial tissue is at least partly dependent on medio-lateral cell intercalation in paraxial tissue. We also show that the slb phenotype is rescued by a truncated form of Dishevelled that does not signal through the canonical Wnt pathway3, suggesting that, as in flies4, Wnt signalling might mediate morphogenetic events through a divergent signal transduction cascade. Our results provide genetic and experimental evidence that Wnt activity in lateral tissues has a crucial role in driving the convergent extension movements underlying vertebrate gastrulation.

Suggested Citation

  • Carl-Philipp Heisenberg & Masazumi Tada & Gerd-Jörg Rauch & Leonor Saúde & Miguel L. Concha & Robert Geisler & Derek L. Stemple & James C. Smith & Stephen W. Wilson, 2000. "Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation," Nature, Nature, vol. 405(6782), pages 76-81, May.
  • Handle: RePEc:nat:nature:v:405:y:2000:i:6782:d:10.1038_35011068
    DOI: 10.1038/35011068
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35011068
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35011068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Sousa-Ortega & Javier Vázquez-Marín & Estefanía Sanabria-Reinoso & Jorge Corbacho & Rocío Polvillo & Alejandro Campoy-López & Lorena Buono & Felix Loosli & María Almuedo-Castillo & Juan R. Martíne, 2023. "A Yap-dependent mechanoregulatory program sustains cell migration for embryo axis assembly," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Maria Jussila & Curtis W. Boswell & Nigel W. Griffiths & Patrick G. Pumputis & Brian Ciruna, 2022. "Live imaging and conditional disruption of native PCP activity using endogenously tagged zebrafish sfGFP-Vangl2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Katarzyna Niescierowicz & Leszek Pryszcz & Cristina Navarrete & Eugeniusz Tralle & Agata Sulej & Karim Abu Nahia & Marta Elżbieta Kasprzyk & Katarzyna Misztal & Abhishek Pateria & Adrianna Pakuła & Ma, 2022. "Adar-mediated A-to-I editing is required for embryonic patterning and innate immune response regulation in zebrafish," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:405:y:2000:i:6782:d:10.1038_35011068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.