IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v608y2022i7922d10.1038_s41586-022-04957-x.html
   My bibliography  Save this article

Self-emergence of robust solitons in a microcavity

Author

Listed:
  • Maxwell Rowley

    (University of Sussex)

  • Pierre-Henry Hanzard

    (University of Sussex)

  • Antonio Cutrona

    (University of Sussex
    Loughborough University)

  • Hualong Bao

    (University of Sussex)

  • Sai T. Chu

    (City University of Hong Kong, Tat Chee Avenue)

  • Brent E. Little

    (Xi’an Institute of Optics and Precision Mechanics, CAS)

  • Roberto Morandotti

    (INRS-EMT)

  • David J. Moss

    (Swinburne University of Technology)

  • Gian-Luca Oppo

    (University of Strathclyde)

  • Juan Sebastian Totero Gongora

    (University of Sussex
    Loughborough University)

  • Marco Peccianti

    (University of Sussex
    Loughborough University)

  • Alessia Pasquazi

    (University of Sussex
    Loughborough University)

Abstract

In many disciplines, states that emerge in open systems far from equilibrium are determined by a few global parameters1,2. These states can often mimic thermodynamic equilibrium, a classic example being the oscillation threshold of a laser3 that resembles a phase transition in condensed matter. However, many classes of states cannot form spontaneously in dissipative systems, and this is the case for cavity solitons2 that generally need to be induced by external perturbations, as in the case of optical memories4,5. In the past decade, these highly localized states have enabled important advancements in microresonator-based optical frequency combs6,7. However, the very advantages that make cavity solitons attractive for memories—their inability to form spontaneously from noise—have created fundamental challenges. As sources, microcombs require spontaneous and reliable initiation into a desired state that is intrinsically robust8–20. Here we show that the slow non-linearities of a free-running microresonator-filtered fibre laser21 can transform temporal cavity solitons into the system’s dominant attractor. This phenomenon leads to reliable self-starting oscillation of microcavity solitons that are naturally robust to perturbations, recovering spontaneously even after complete disruption. These emerge repeatably and controllably into a large region of the global system parameter space in which specific states, highly stable over long timeframes, can be achieved.

Suggested Citation

  • Maxwell Rowley & Pierre-Henry Hanzard & Antonio Cutrona & Hualong Bao & Sai T. Chu & Brent E. Little & Roberto Morandotti & David J. Moss & Gian-Luca Oppo & Juan Sebastian Totero Gongora & Marco Pecci, 2022. "Self-emergence of robust solitons in a microcavity," Nature, Nature, vol. 608(7922), pages 303-309, August.
  • Handle: RePEc:nat:nature:v:608:y:2022:i:7922:d:10.1038_s41586-022-04957-x
    DOI: 10.1038/s41586-022-04957-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04957-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04957-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingming Nie & Jonathan Musgrave & Kunpeng Jia & Jan Bartos & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2024. "Turnkey photonic flywheel in a microresonator-filtered laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Jingwei Ling & Zhengdong Gao & Shixin Xue & Qili Hu & Mingxiao Li & Kaibo Zhang & Usman A. Javid & Raymond Lopez-Rios & Jeremy Staffa & Qiang Lin, 2024. "Electrically empowered microcomb laser," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Enze Wang & Zixin Xiong & Zekun Chen & Zeqin Xin & Huachun Ma & Hongtao Ren & Bolun Wang & Jing Guo & Yufei Sun & Xuewen Wang & Chenyu Li & Xiaoyan Li & Kai Liu, 2023. "Water nanolayer facilitated solitary-wave-like blisters in MoS2 thin films," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:608:y:2022:i:7922:d:10.1038_s41586-022-04957-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.