IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55173-2.html
   My bibliography  Save this article

Modulating synaptic plasticity with metal−organic framework for information-filterable artificial retina

Author

Listed:
  • Seongchan Kim

    (University of Pennsylvania)

  • Ohchan Kwon

    (Yonsei University
    University of California)

  • Seonkwon Kim

    (Yonsei University)

  • Seonmin Jang

    (The Pennsylvania State University, University Park)

  • Seungho Yu

    (Konkuk University)

  • Choong Hoo Lee

    (Yonsei University)

  • Yoon Young Choi

    (University of Illinois, Urbana-Champaign)

  • Soo Young Cho

    (Yonsei University)

  • Ki Chul Kim

    (Konkuk University
    Konkuk University)

  • Cunjiang Yu

    (University of Illinois, Urbana-Champaign
    University of Illinois, Urbana-Champaign
    University of Illinois, Urbana-Champaign
    University of Illinois, Urbana-Champaign)

  • Dae Woo Kim

    (Yonsei University)

  • Jeong Ho Cho

    (Yonsei University)

Abstract

Neuroprosthetics equipped with artificial synapses hold promise to address some most intricate medical problems, such as human sensory disorders. Yet, it is necessitated and of paramount importance for neuroprosthetics to be able to differentiate significant and insignificant signals. Here, we present an information-filterable artificial retina system that integrates artificial synapses with a signal-integration device for signal perception and processing with attention. The synaptic weight modulation is rendered through metal–organic framework (MOF) layers, where distinct short-term and long-term properties are predominantly determined by MOF’s pore diameter and functionality. Specifically, four types of isoreticular Zr-based MOFs that share Zr6O4(OH)4 secondary building units have been systematically examined. It is demonstrated that small pore diameters enhance short-term properties, while large pores, which are characterized by increased ion affinity, sustain long-term properties. Moreover, we demonstrated a 6 × 6 pixel artificial retina by incorporating both short-term and long-term artificial synapses with a signal-integration device. Signal summation by the signal-integration device enables attention-based information processing. The information-filterable artificial retina system developed here emulates human perception processes and holds promise in the fields of neuroprosthetics and advanced artificial intelligence.

Suggested Citation

  • Seongchan Kim & Ohchan Kwon & Seonkwon Kim & Seonmin Jang & Seungho Yu & Choong Hoo Lee & Yoon Young Choi & Soo Young Cho & Ki Chul Kim & Cunjiang Yu & Dae Woo Kim & Jeong Ho Cho, 2025. "Modulating synaptic plasticity with metal−organic framework for information-filterable artificial retina," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55173-2
    DOI: 10.1038/s41467-024-55173-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55173-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55173-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chengpeng Jiang & Honghuan Xu & Lu Yang & Jiaqi Liu & Yue Li & Kuniharu Takei & Wentao Xu, 2024. "Neuromorphic antennal sensory system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Yongsuk Choi & Seyong Oh & Chuan Qian & Jin-Hong Park & Jeong Ho Cho, 2020. "Vertical organic synapse expandable to 3D crossbar array," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Fabien B. Wagner & Jean-Baptiste Mignardot & Camille G. Le Goff-Mignardot & Robin Demesmaeker & Salif Komi & Marco Capogrosso & Andreas Rowald & Ismael Seáñez & Miroslav Caban & Elvira Pirondini & Mol, 2018. "Targeted neurotechnology restores walking in humans with spinal cord injury," Nature, Nature, vol. 563(7729), pages 65-71, November.
    4. Seongchan Kim & Yoon Young Choi & Taewan Kim & Yong Min Kim & Dong Hae Ho & Young Jin Choi & Dong Gue Roe & Ju-Hee Lee & Joongpill Park & Ji-Woong Choi & Jeong Won Kim & Jin-Hong Park & Sae Byeok Jo &, 2022. "A biomimetic ocular prosthesis system: emulating autonomic pupil and corneal reflections," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashraf S. Gorgey & Robert Trainer & Tommy W. Sutor & Jacob A. Goldsmith & Ahmed Alazzam & Lance L. Goetz & Denise Lester & Timothy D. Lavis, 2023. "A case study of percutaneous epidural stimulation to enable motor control in two men after spinal cord injury," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Dong Gue Roe & Dong Hae Ho & Yoon Young Choi & Young Jin Choi & Seongchan Kim & Sae Byeok Jo & Moon Sung Kang & Jong-Hyun Ahn & Jeong Ho Cho, 2023. "Humanlike spontaneous motion coordination of robotic fingers through spatial multi-input spike signal multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Yao Ni & Jiaqi Liu & Hong Han & Qianbo Yu & Lu Yang & Zhipeng Xu & Chengpeng Jiang & Lu Liu & Wentao Xu, 2024. "Visualized in-sensor computing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Weijia Liu & Zhijian Du & Zhongyi Duan & La Li & Guozhen Shen, 2024. "Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Giacomo Valle & Natalija Katic Secerovic & Dominic Eggemann & Oleg Gorskii & Natalia Pavlova & Francesco M. Petrini & Paul Cvancara & Thomas Stieglitz & Pavel Musienko & Marko Bumbasirevic & Stanisa R, 2024. "Biomimetic computer-to-brain communication enhancing naturalistic touch sensations via peripheral nerve stimulation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Seokho Seo & Beomjin Kim & Donghoon Kim & Seungwoo Park & Tae Ryong Kim & Junkyu Park & Hakcheon Jeong & See-On Park & Taehoon Park & Hyeok Shin & Myung-Su Kim & Yang-Kyu Choi & Shinhyun Choi, 2022. "The gate injection-based field-effect synapse transistor with linear conductance update for online training," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Elisa Donati & Giacomo Valle, 2024. "Neuromorphic hardware for somatosensory neuroprostheses," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Kaya J. E. Matson & Daniel E. Russ & Claudia Kathe & Isabelle Hua & Dragan Maric & Yi Ding & Jonathan Krynitsky & Randall Pursley & Anupama Sathyamurthy & Jordan W. Squair & Boaz P. Levi & Gregoire Co, 2022. "Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Kai Zhou & Wei Wei & Dan Yang & Hui Zhang & Wei Yang & Yunpeng Zhang & Yingnan Nie & Mingming Hao & Pengcheng Wang & Hang Ruan & Ting Zhang & Shouyan Wang & Yaobo Liu, 2024. "Dual electrical stimulation at spinal-muscular interface reconstructs spinal sensorimotor circuits after spinal cord injury," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    10. Han Xu & Dashan Shang & Qing Luo & Junjie An & Yue Li & Shuyu Wu & Zhihong Yao & Woyu Zhang & Xiaoxin Xu & Chunmeng Dou & Hao Jiang & Liyang Pan & Xumeng Zhang & Ming Wang & Zhongrui Wang & Jianshi Ta, 2023. "A low-power vertical dual-gate neurotransistor with short-term memory for high energy-efficient neuromorphic computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Maxime Lemieux & Narges Karimi & Frederic Bretzner, 2024. "Functional plasticity of glutamatergic neurons of medullary reticular nuclei after spinal cord injury in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. He-Shan Zhang & Xue-Mei Dong & Zi-Cheng Zhang & Ze-Pu Zhang & Chao-Yi Ban & Zhe Zhou & Cheng Song & Shi-Qi Yan & Qian Xin & Ju-Qing Liu & Yin-Xiang Li & Wei Huang, 2022. "Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55173-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.