IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17850-w.html
   My bibliography  Save this article

Vertical organic synapse expandable to 3D crossbar array

Author

Listed:
  • Yongsuk Choi

    (Yonsei University)

  • Seyong Oh

    (Sungkyunkwan University)

  • Chuan Qian

    (Yonsei University)

  • Jin-Hong Park

    (Sungkyunkwan University
    Sungkyunkwan University)

  • Jeong Ho Cho

    (Yonsei University)

Abstract

Recently, three-terminal synaptic devices have attracted considerable attention owing to their nondestructive weight-update behavior, which is attributed to the completely separated terminals for reading and writing. However, the structural limitations of these devices, such as a low array density and complex line design, are predicted to result in low processing speeds and high energy consumption of the entire system. Here, we propose a vertical three-terminal synapse featuring a remote weight update via ion gel, which is also extendable to a crossbar array structure. This synaptic device exhibits excellent synaptic characteristics, which are achieved via precise control of ion penetration onto the vertical channel through the weight-control terminal. Especially, the applicability of the developed vertical organic synapse array to neuromorphic computing is demonstrated using a simple crossbar synapse array. The proposed synaptic device technology is expected to be an important steppingstone to the development of high-performance and high-density neural networks.

Suggested Citation

  • Yongsuk Choi & Seyong Oh & Chuan Qian & Jin-Hong Park & Jeong Ho Cho, 2020. "Vertical organic synapse expandable to 3D crossbar array," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17850-w
    DOI: 10.1038/s41467-020-17850-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17850-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17850-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He-Shan Zhang & Xue-Mei Dong & Zi-Cheng Zhang & Ze-Pu Zhang & Chao-Yi Ban & Zhe Zhou & Cheng Song & Shi-Qi Yan & Qian Xin & Ju-Qing Liu & Yin-Xiang Li & Wei Huang, 2022. "Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Seokho Seo & Beomjin Kim & Donghoon Kim & Seungwoo Park & Tae Ryong Kim & Junkyu Park & Hakcheon Jeong & See-On Park & Taehoon Park & Hyeok Shin & Myung-Su Kim & Yang-Kyu Choi & Shinhyun Choi, 2022. "The gate injection-based field-effect synapse transistor with linear conductance update for online training," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Dong Gue Roe & Dong Hae Ho & Yoon Young Choi & Young Jin Choi & Seongchan Kim & Sae Byeok Jo & Moon Sung Kang & Jong-Hyun Ahn & Jeong Ho Cho, 2023. "Humanlike spontaneous motion coordination of robotic fingers through spatial multi-input spike signal multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Yao Ni & Jiaqi Liu & Hong Han & Qianbo Yu & Lu Yang & Zhipeng Xu & Chengpeng Jiang & Lu Liu & Wentao Xu, 2024. "Visualized in-sensor computing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Han Xu & Dashan Shang & Qing Luo & Junjie An & Yue Li & Shuyu Wu & Zhihong Yao & Woyu Zhang & Xiaoxin Xu & Chunmeng Dou & Hao Jiang & Liyang Pan & Xumeng Zhang & Ming Wang & Zhongrui Wang & Jianshi Ta, 2023. "A low-power vertical dual-gate neurotransistor with short-term memory for high energy-efficient neuromorphic computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17850-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.