IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54923-6.html
   My bibliography  Save this article

19.5% Inverted organic photovoltaic with record long-lifetime via multifunctional interface engineering featuring radical scavenger

Author

Listed:
  • Jiaming Huang

    (The Hong Kong Polytechnic University)

  • Jiehao Fu

    (The Hong Kong Polytechnic University)

  • Bo Yuan

    (City University of Hong Kong)

  • Hao Xia

    (The Hong Kong Polytechnic University)

  • Tianxiang Chen

    (The Hong Kong Polytechnic University)

  • Yongwen Lang

    (The Hong Kong Polytechnic University)

  • Heng Liu

    (The Chinese University of Hong Kong)

  • Zhiwei Ren

    (The Hong Kong Polytechnic University)

  • Qiong Liang

    (The Hong Kong Polytechnic University)

  • Kuan Liu

    (The Hong Kong Polytechnic University)

  • Zhiqiang Guan

    (City University of Hong Kong)

  • Guangruixing Zou

    (City University of Hong Kong)

  • Hrisheekesh Thachoth Chandran

    (The Hong Kong Polytechnic University)

  • Tsz Woon Benedict Lo

    (The Hong Kong Polytechnic University)

  • Xinhui Lu

    (The Chinese University of Hong Kong)

  • Chun-Sing Lee

    (City University of Hong Kong)

  • Hin-Lap Yip

    (City University of Hong Kong)

  • Yung-Kang Peng

    (City University of Hong Kong)

  • Gang Li

    (The Hong Kong Polytechnic University
    The Hong Kong Polytechnic University
    The Hong Kong Polytechnic University)

Abstract

Advances in improving the operational lifetime of highly efficient organic photovoltaic (OPV) and understanding photo-degradation mechanisms in molecular level are currently limited, especially on the promising inverted OPV, posing critical challenges to commercialization. Here, we demonstrate a radical scavenger (3-(3,5-Di-tert-butyl-4-hydroxyphenyl)propionic acid) capped ZnO (BHT@ZnO) nanoparticles as the electron transport layer providing effective surface oxygen vacancy passivation and reactive radical capture capability. Encouragingly, this BHT@ZnO-based empowered device achieves a record inverted OPV efficiency of 19.47% (Certificated efficiency: 18.97%). The devices demonstrate light soaking-free behavior, long-term stability under ISOS-D-1 (94.2% PCE retention after 8904 h in ambient) and ISOS-L-1 testing protocol (81.5% PCE retention after 7724 h in MPP). More importantly, we elucidate detailed degradation mechanism in OPV involving selectively catalytic degradation of donor and acceptor by superoxide and hydroxyl radicals, respectively, as well as the degradation pathway of polymer donor upon radiation exposure. Performance enhancement and mechanism comprehension provide strong support for the development of OPV technology.

Suggested Citation

  • Jiaming Huang & Jiehao Fu & Bo Yuan & Hao Xia & Tianxiang Chen & Yongwen Lang & Heng Liu & Zhiwei Ren & Qiong Liang & Kuan Liu & Zhiqiang Guan & Guangruixing Zou & Hrisheekesh Thachoth Chandran & Tsz , 2024. "19.5% Inverted organic photovoltaic with record long-lifetime via multifunctional interface engineering featuring radical scavenger," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54923-6
    DOI: 10.1038/s41467-024-54923-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54923-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54923-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao Li & Jiadong Zhou & Jiali Song & Jinqiu Xu & Huotian Zhang & Xuning Zhang & Jing Guo & Lei Zhu & Donghui Wei & Guangchao Han & Jie Min & Yuan Zhang & Zengqi Xie & Yuanping Yi & He Yan & Feng Gao , 2021. "Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells," Nature Energy, Nature, vol. 6(6), pages 605-613, June.
    2. Yanxun Li & Bo Huang & Xuning Zhang & Jianwei Ding & Yingyu Zhang & Linge Xiao & Boxin Wang & Qian Cheng & Gaosheng Huang & Hong Zhang & Yingguo Yang & Xiaoying Qi & Qiang Zheng & Yuan Zhang & Xiaohui, 2023. "Lifetime over 10000 hours for organic solar cells with Ir/IrOx electron-transporting layer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yepin Zhao & Zongqi Li & Caner Deger & Minhuan Wang & Miroslav Peric & Yanfeng Yin & Dong Meng & Wenxin Yang & Xinyao Wang & Qiyu Xing & Bin Chang & Elizabeth G. Scott & Yifan Zhou & Elizabeth Zhang &, 2023. "Achieving sustainability of greenhouses by integrating stable semi-transparent organic photovoltaics," Nature Sustainability, Nature, vol. 6(5), pages 539-548, May.
    4. Daniel M. Kroupa & Márton Vörös & Nicholas P. Brawand & Brett W. McNichols & Elisa M. Miller & Jing Gu & Arthur J. Nozik & Alan Sellinger & Giulia Galli & Matthew C. Beard, 2017. "Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    5. Zhi-Xi Liu & Zhi-Peng Yu & Ziqiu Shen & Chengliang He & Tsz-Ki Lau & Zeng Chen & Haiming Zhu & Xinhui Lu & Zengqi Xie & Hongzheng Chen & Chang-Zhi Li, 2021. "Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Jiehao Fu & Qianguang Yang & Peihao Huang & Sein Chung & Kilwon Cho & Zhipeng Kan & Heng Liu & Xinhui Lu & Yongwen Lang & Hanjian Lai & Feng He & Patrick W. K. Fong & Shirong Lu & Yang Yang & Zeyun Xi, 2024. "Rational molecular and device design enables organic solar cells approaching 20% efficiency," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Youyu Jiang & Xinyun Dong & Lulu Sun & Tiefeng Liu & Fei Qin & Cong Xie & Pei Jiang & Lu Hu & Xin Lu & Xianmin Zhou & Wei Meng & Ning Li & Christoph J. Brabec & Yinhua Zhou, 2022. "An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability," Nature Energy, Nature, vol. 7(4), pages 352-359, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Chen & Liang Wang & Weiyi Xia & Ke Qiu & Chuanhang Guo & Zirui Gan & Jing Zhou & Yuandong Sun & Dan Liu & Wei Li & Tao Wang, 2024. "Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Wei Gao & Ruijie Ma & Top Archie Dela Peña & Cenqi Yan & Hongxiang Li & Mingjie Li & Jiaying Wu & Pei Cheng & Cheng Zhong & Zhanhua Wei & Alex K.-Y. Jen & Gang Li, 2024. "Efficient all-small-molecule organic solar cells processed with non-halogen solvent," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Yanxun Li & Bo Huang & Xuning Zhang & Jianwei Ding & Yingyu Zhang & Linge Xiao & Boxin Wang & Qian Cheng & Gaosheng Huang & Hong Zhang & Yingguo Yang & Xiaoying Qi & Qiang Zheng & Yuan Zhang & Xiaohui, 2023. "Lifetime over 10000 hours for organic solar cells with Ir/IrOx electron-transporting layer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yuanyuan Jiang & Yixin Li & Feng Liu & Wenxuan Wang & Wenli Su & Wuyue Liu & Songjun Liu & Wenkai Zhang & Jianhui Hou & Shengjie Xu & Yuanping Yi & Xiaozhang Zhu, 2023. "Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Xuelin Wang & Qianqian Sun & Jinhua Gao & Jian Wang & Chunyu Xu & Xiaoling Ma & Fujun Zhang, 2021. "Recent Progress of Organic Photovoltaics with Efficiency over 17%," Energies, MDPI, vol. 14(14), pages 1-27, July.
    6. Hao Zhang & Chenyang Tian & Ziqi Zhang & Meiling Xie & Jianqi Zhang & Lingyun Zhu & Zhixiang Wei, 2023. "Concretized structural evolution supported assembly-controlled film-forming kinetics in slot-die coated organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Yanan Shi & Yilin Chang & Kun Lu & Zhihao Chen & Jianqi Zhang & Yangjun Yan & Dingding Qiu & Yanan Liu & Muhammad Abdullah Adil & Wei Ma & Xiaotao Hao & Lingyun Zhu & Zhixiang Wei, 2022. "Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Bin Liu & Huiliang Sun & Jin-Woo Lee & Zhengyan Jiang & Junqin Qiao & Junwei Wang & Jie Yang & Kui Feng & Qiaogan Liao & Mingwei An & Bolin Li & Dongxue Han & Baomin Xu & Hongzhen Lian & Li Niu & Bumj, 2023. "Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Guangpei Sun & Xin Jiang & Xiaojun Li & Lei Meng & Jinyuan Zhang & Shucheng Qin & Xiaolei Kong & Jing Li & Jingming Xin & Wei Ma & Yongfang Li, 2022. "High performance polymerized small molecule acceptor by synergistic optimization on π-bridge linker and side chain," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Kai Zhang & Yang Shen & Long-Xue Cao & Zhen-Huang Su & Xin-Mei Hu & Shi-Chi Feng & Bing-Feng Wang & Feng-Ming Xie & Hao-Ze Li & Xingyu Gao & Yan-Qing Li & Jian-Xin Tang, 2024. "Nondestructive halide exchange via SN2-like mechanism for efficient blue perovskite light-emitting diodes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Qiuju Liang & Jianhong Yao & Zhangbo Hu & Puxin Wei & Haodong Lu & Yukai Yin & Kang Wang & Jiangang Liu, 2021. "Recent Advances of Film–Forming Kinetics in Organic Solar Cells," Energies, MDPI, vol. 14(22), pages 1-26, November.
    12. Daniel Corzo & Diego Rosas-Villalva & Amruth C & Guillermo Tostado-Blázquez & Emily Bezerra Alexandre & Luis Huerta Hernandez & Jianhua Han & Han Xu & Maxime Babics & Stefaan Wolf & Derya Baran, 2023. "High-performing organic electronics using terpene green solvents from renewable feedstocks," Nature Energy, Nature, vol. 8(1), pages 62-73, January.
    13. Roberto Sorrentino & Marta Penconi & Anita Andicsová-Eckstein & Guido Scavia & Helena Švajdlenková & Erika Kozma & Silvia Luzzati, 2021. "An N-type Naphthalene Diimide Ionene Polymer as Cathode Interlayer for Organic Solar Cells," Energies, MDPI, vol. 14(2), pages 1-11, January.
    14. Samuele Giannini & Wei-Tao Peng & Lorenzo Cupellini & Daniele Padula & Antoine Carof & Jochen Blumberger, 2022. "Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Jiehao Fu & Patrick W. K. Fong & Heng Liu & Chieh-Szu Huang & Xinhui Lu & Shirong Lu & Maged Abdelsamie & Tim Kodalle & Carolin M. Sutter-Fella & Yang Yang & Gang Li, 2023. "19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Han Yu & Yan Wang & Xinhui Zou & Junli Yin & Xiaoyu Shi & Yuhao Li & Heng Zhao & Lingyuan Wang & Ho Ming Ng & Bosen Zou & Xinhui Lu & Kam Sing Wong & Wei Ma & Zonglong Zhu & He Yan & Shangshang Chen, 2023. "Improved photovoltaic performance and robustness of all-polymer solar cells enabled by a polyfullerene guest acceptor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Xue Lai, & Shiyan Chen, & Xiaoyu Gu, & Hanjian Lai, & Yunpeng Wang, & Yulin Zhu, & Hui Wang, & Jianfei Qu, & Aung Ko Ko Kyaw & Haiping Xia & Feng He, 2023. "Phenanthroline-carbolong interface suppress chemical interactions with active layer enabling long-time stable organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Yunhao Cai & Qian Li & Guanyu Lu & Hwa Sook Ryu & Yun Li & Hui Jin & Zhihao Chen & Zheng Tang & Guanghao Lu & Xiaotao Hao & Han Young Woo & Chunfeng Zhang & Yanming Sun, 2022. "Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Dongyang Li & Qing Lian & Tao Du & Ruijie Ma & Heng Liu & Qiong Liang & Yu Han & Guojun Mi & Ouwen Peng & Guihua Zhang & Wenbo Peng & Baomin Xu & Xinhui Lu & Kuan Liu & Jun Yin & Zhiwei Ren & Gang Li , 2024. "Co-adsorbed self-assembled monolayer enables high-performance perovskite and organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Hongyuan Fu & Jia Yao & Ming Zhang & Lingwei Xue & Qiuju Zhou & Shangyu Li & Ming Lei & Lei Meng & Zhi-Guo Zhang & Yongfang Li, 2022. "Low-cost synthesis of small molecule acceptors makes polymer solar cells commercially viable," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54923-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.