IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p454-d481277.html
   My bibliography  Save this article

An N-type Naphthalene Diimide Ionene Polymer as Cathode Interlayer for Organic Solar Cells

Author

Listed:
  • Roberto Sorrentino

    (Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta”, CNR—SCITEC, via A. Corti 12, 20133 Milan, Italy)

  • Marta Penconi

    (Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta”, CNR—SCITEC, via A. Corti 12, 20133 Milan, Italy)

  • Anita Andicsová-Eckstein

    (Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia)

  • Guido Scavia

    (Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta”, CNR—SCITEC, via A. Corti 12, 20133 Milan, Italy)

  • Helena Švajdlenková

    (Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia)

  • Erika Kozma

    (Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta”, CNR—SCITEC, via A. Corti 12, 20133 Milan, Italy)

  • Silvia Luzzati

    (Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta”, CNR—SCITEC, via A. Corti 12, 20133 Milan, Italy)

Abstract

Polymer solar cells (PSCs) based on non-fullerene acceptors have the advantages of synthetic versatility, strong absorption ability, and high thermal stability. These characteristics result in impressive power conversion efficiency values, but to further push both the performance and the stability of PSCs, the insertion of appropriate interlayers in the device structure remains mandatory. Herein, a naphthalene diimide-based cathode interlayer (NDI-OH) is synthesized with a facile three-step reaction and used as a cathode interlayer for fullerene and non-fullerene PSCs. This cationic polyelectrolyte exhibited good solubility in alcohol solvents, transparency in the visible range, self-doping behavior, and good film forming ability. All these characteristics allowed the increase in the devices’ power conversion efficiencies (PCE) both for fullerene and non-fullerene-based PSCs. The successful results make NDI-OH a promising cathode interlayer to apply in PSCs.

Suggested Citation

  • Roberto Sorrentino & Marta Penconi & Anita Andicsová-Eckstein & Guido Scavia & Helena Švajdlenková & Erika Kozma & Silvia Luzzati, 2021. "An N-type Naphthalene Diimide Ionene Polymer as Cathode Interlayer for Organic Solar Cells," Energies, MDPI, vol. 14(2), pages 1-11, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:454-:d:481277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao Li & Jiadong Zhou & Jiali Song & Jinqiu Xu & Huotian Zhang & Xuning Zhang & Jing Guo & Lei Zhu & Donghui Wei & Guangchao Han & Jie Min & Yuan Zhang & Zengqi Xie & Yuanping Yi & He Yan & Feng Gao , 2021. "Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells," Nature Energy, Nature, vol. 6(6), pages 605-613, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinlei Wu & Yuanpeng Zhang & Kaihang Shi & Xiaoling Ma & Fujun Zhang, 2023. "Advanced Progress of Organic Photovoltaics," Energies, MDPI, vol. 16(3), pages 1-3, January.
    2. Jaemin Kong, 2022. "Advanced Polymer and Perovskite Solar Cells," Energies, MDPI, vol. 15(2), pages 1-2, January.
    3. Yu Jiang & Youjun Bai & Shenghao Wang, 2023. "Organic Solar Cells: From Fundamental to Application," Energies, MDPI, vol. 16(5), pages 1-3, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan Jiang & Yixin Li & Feng Liu & Wenxuan Wang & Wenli Su & Wuyue Liu & Songjun Liu & Wenkai Zhang & Jianhui Hou & Shengjie Xu & Yuanping Yi & Xiaozhang Zhu, 2023. "Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Xuelin Wang & Qianqian Sun & Jinhua Gao & Jian Wang & Chunyu Xu & Xiaoling Ma & Fujun Zhang, 2021. "Recent Progress of Organic Photovoltaics with Efficiency over 17%," Energies, MDPI, vol. 14(14), pages 1-27, July.
    3. Hao Zhang & Chenyang Tian & Ziqi Zhang & Meiling Xie & Jianqi Zhang & Lingyun Zhu & Zhixiang Wei, 2023. "Concretized structural evolution supported assembly-controlled film-forming kinetics in slot-die coated organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yanan Shi & Yilin Chang & Kun Lu & Zhihao Chen & Jianqi Zhang & Yangjun Yan & Dingding Qiu & Yanan Liu & Muhammad Abdullah Adil & Wei Ma & Xiaotao Hao & Lingyun Zhu & Zhixiang Wei, 2022. "Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Bin Liu & Huiliang Sun & Jin-Woo Lee & Zhengyan Jiang & Junqin Qiao & Junwei Wang & Jie Yang & Kui Feng & Qiaogan Liao & Mingwei An & Bolin Li & Dongxue Han & Baomin Xu & Hongzhen Lian & Li Niu & Bumj, 2023. "Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Sri Harish Kumar Paleti & Sandra Hultmark & Jianhua Han & Yuanfan Wen & Han Xu & Si Chen & Emmy Järsvall & Ishita Jalan & Diego Rosas Villalva & Anirudh Sharma & Jafar. I. Khan & Ellen Moons & Ruipeng, 2023. "Hexanary blends: a strategy towards thermally stable organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Guangpei Sun & Xin Jiang & Xiaojun Li & Lei Meng & Jinyuan Zhang & Shucheng Qin & Xiaolei Kong & Jing Li & Jingming Xin & Wei Ma & Yongfang Li, 2022. "High performance polymerized small molecule acceptor by synergistic optimization on π-bridge linker and side chain," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Hongyue Tian & Mingxin Zhao & Xiaoling Ma & Chunyu Xu & Wenjing Xu & Zhongyuan Liu & Miao Zhang & Fujun Zhang, 2023. "Critical Progress of Polymer Solar Cells with a Power Conversion Efficiency over 18%," Energies, MDPI, vol. 16(11), pages 1-34, June.
    9. Chen Chen & Liang Wang & Weiyi Xia & Ke Qiu & Chuanhang Guo & Zirui Gan & Jing Zhou & Yuandong Sun & Dan Liu & Wei Li & Tao Wang, 2024. "Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Wei Gao & Ruijie Ma & Top Archie Dela Peña & Cenqi Yan & Hongxiang Li & Mingjie Li & Jiaying Wu & Pei Cheng & Cheng Zhong & Zhanhua Wei & Alex K.-Y. Jen & Gang Li, 2024. "Efficient all-small-molecule organic solar cells processed with non-halogen solvent," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Qiuju Liang & Jianhong Yao & Zhangbo Hu & Puxin Wei & Haodong Lu & Yukai Yin & Kang Wang & Jiangang Liu, 2021. "Recent Advances of Film–Forming Kinetics in Organic Solar Cells," Energies, MDPI, vol. 14(22), pages 1-26, November.
    12. Daniel Corzo & Diego Rosas-Villalva & Amruth C & Guillermo Tostado-Blázquez & Emily Bezerra Alexandre & Luis Huerta Hernandez & Jianhua Han & Han Xu & Maxime Babics & Stefaan Wolf & Derya Baran, 2023. "High-performing organic electronics using terpene green solvents from renewable feedstocks," Nature Energy, Nature, vol. 8(1), pages 62-73, January.
    13. Rui Zeng & Lei Zhu & Ming Zhang & Wenkai Zhong & Guanqing Zhou & Jiaxing Zhuang & Tianyu Hao & Zichun Zhou & Libo Zhou & Nicolai Hartmann & Xiaonan Xue & Hao Jing & Fei Han & Yiming Bai & Hongbo Wu & , 2023. "All-polymer organic solar cells with nano-to-micron hierarchical morphology and large light receiving angle," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Yang Bai & Ze Zhang & Qiuju Zhou & Hua Geng & Qi Chen & Seoyoung Kim & Rui Zhang & Cen Zhang & Bowen Chang & Shangyu Li & Hongyuan Fu & Lingwei Xue & Haiqiao Wang & Wenbin Li & Weihua Chen & Mengyuan , 2023. "Geometry design of tethered small-molecule acceptor enables highly stable and efficient polymer solar cells," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Hongbo Wu & Hao Lu & Yungui Li & Xin Zhou & Guanqing Zhou & Hailin Pan & Hanyu Wu & Xunda Feng & Feng Liu & Koen Vandewal & Wolfgang Tress & Zaifei Ma & Zhishan Bo & Zheng Tang, 2024. "Decreasing exciton dissociation rates for reduced voltage losses in organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Yuming Wang & Jianwei Yu & Rui Zhang & Jun Yuan & Sandra Hultmark & Catherine E. Johnson & Nathaniel P. Gallop & Bernhard Siegmund & Deping Qian & Huotian Zhang & Yingping Zou & Martijn Kemerink & Art, 2023. "Origins of the open-circuit voltage in ternary organic solar cells and design rules for minimized voltage losses," Nature Energy, Nature, vol. 8(9), pages 978-988, September.
    17. Yilei Wu & Yue Yuan & Diego Sorbelli & Christina Cheng & Lukas Michalek & Hao-Wen Cheng & Vishal Jindal & Song Zhang & Garrett LeCroy & Enrique D. Gomez & Scott T. Milner & Alberto Salleo & Giulia Gal, 2024. "Tuning polymer-backbone coplanarity and conformational order to achieve high-performance printed all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Samuele Giannini & Wei-Tao Peng & Lorenzo Cupellini & Daniele Padula & Antoine Carof & Jochen Blumberger, 2022. "Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Jiehao Fu & Patrick W. K. Fong & Heng Liu & Chieh-Szu Huang & Xinhui Lu & Shirong Lu & Maged Abdelsamie & Tim Kodalle & Carolin M. Sutter-Fella & Yang Yang & Gang Li, 2023. "19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Xinjun He & Feng Qi & Xinhui Zou & Yanxun Li & Heng Liu & Xinhui Lu & Kam Sing Wong & Alex K.-Y. Jen & Wallace C. H. Choy, 2024. "Selenium substitution for dielectric constant improvement and hole-transfer acceleration in non-fullerene organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:454-:d:481277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.