IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v421y2003i6924d10.1038_nature01377.html
   My bibliography  Save this article

Dynein structure and power stroke

Author

Listed:
  • Stan A. Burgess

    (University of Leeds)

  • Matt L. Walker

    (University of Leeds)

  • Hitoshi Sakakibara

    (Communications Research Laboratory)

  • Peter J. Knight

    (University of Leeds)

  • Kazuhiro Oiwa

    (Communications Research Laboratory)

Abstract

Dynein ATPases are microtubule motors that are critical to diverse processes such as vesicle transport and the beating of sperm tails; however, their mechanism of force generation is unknown. Each dynein comprises a head, from which a stalk and a stem emerge. Here we use electron microscopy and image processing to reveal new structural details of dynein c, an isoform from Chlamydomonas reinhardtii flagella, at the start and end of its power stroke. Both stem and stalk are flexible, and the stem connects to the head by means of a linker approximately 10 nm long that we propose lies across the head. With both ADP and vanadate bound, the stem and stalk emerge from the head 10 nm apart. However, without nucleotide they emerge much closer together owing to a change in linker orientation, and the coiled-coil stalk becomes stiffer. The net result is a shortening of the molecule coupled to an approximately 15-nm displacement of the tip of the stalk. These changes indicate a mechanism for the dynein power stroke.

Suggested Citation

  • Stan A. Burgess & Matt L. Walker & Hitoshi Sakakibara & Peter J. Knight & Kazuhiro Oiwa, 2003. "Dynein structure and power stroke," Nature, Nature, vol. 421(6924), pages 715-718, February.
  • Handle: RePEc:nat:nature:v:421:y:2003:i:6924:d:10.1038_nature01377
    DOI: 10.1038/nature01377
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01377
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johan Busselez & Geraldine Koenig & Carine Dominique & Torben Klos & Deepika Velayudhan & Piotr Sosnowski & Nils Marechal & Corinne Crucifix & Hugo Gizardin-Fredon & Sarah Cianferani & Benjamin Albert, 2024. "Remodelling of Rea1 linker domain drives the removal of assembly factors from pre-ribosomal particles," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:421:y:2003:i:6924:d:10.1038_nature01377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.