General-purpose machine-learned potential for 16 elemental metals and their alloys
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-54554-x
Download full text from publisher
References listed on IDEAS
- Luis A. Zepeda-Ruiz & Alexander Stukowski & Tomas Oppelstrup & Vasily V. Bulatov, 2017. "Probing the limits of metal plasticity with molecular dynamics simulations," Nature, Nature, vol. 550(7677), pages 492-495, October.
- Amil Merchant & Simon Batzner & Samuel S. Schoenholz & Muratahan Aykol & Gowoon Cheon & Ekin Dogus Cubuk, 2023. "Scaling deep learning for materials discovery," Nature, Nature, vol. 624(7990), pages 80-85, December.
- Albert Musaelian & Simon Batzner & Anders Johansson & Lixin Sun & Cameron J. Owen & Mordechai Kornbluth & Boris Kozinsky, 2023. "Learning local equivariant representations for large-scale atomistic dynamics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- O. El Atwani & H. T. Vo & M. A. Tunes & C. Lee & A. Alvarado & N. Krienke & J. D. Poplawsky & A. A. Kohnert & J. Gigax & W.-Y. Chen & M. Li & Y. Q. Wang & J. S. Wróbel & D. Nguyen-Manh & J. K. S. Bald, 2023. "A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Simon Batzner & Albert Musaelian & Lixin Sun & Mario Geiger & Jonathan P. Mailoa & Mordechai Kornbluth & Nicola Molinari & Tess E. Smidt & Boris Kozinsky, 2022. "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Sheng Yin & Yunxing Zuo & Anas Abu-Odeh & Hui Zheng & Xiang-Guo Li & Jun Ding & Shyue Ping Ong & Mark Asta & Robert O. Ritchie, 2021. "Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
- So Takamoto & Chikashi Shinagawa & Daisuke Motoki & Kosuke Nakago & Wenwen Li & Iori Kurata & Taku Watanabe & Yoshihiro Yayama & Hiroki Iriguchi & Yusuke Asano & Tasuku Onodera & Takafumi Ishii & Taka, 2022. "Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ziduo Yang & Yi-Ming Zhao & Xian Wang & Xiaoqing Liu & Xiuying Zhang & Yifan Li & Qiujie Lv & Calvin Yu-Chian Chen & Lei Shen, 2024. "Scalable crystal structure relaxation using an iteration-free deep generative model with uncertainty quantification," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Yusong Wang & Tong Wang & Shaoning Li & Xinheng He & Mingyu Li & Zun Wang & Nanning Zheng & Bin Shao & Tie-Yan Liu, 2024. "Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Jonathan P. Mailoa & Xin Li & Shengyu Zhang, 2024. "3T-VASP: fast ab-initio electrochemical reactor via multi-scale gradient energy minimization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Andreas Erlebach & Martin Šípka & Indranil Saha & Petr Nachtigall & Christopher J. Heard & Lukáš Grajciar, 2024. "A reactive neural network framework for water-loaded acidic zeolites," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- J. Thorben Frank & Oliver T. Unke & Klaus-Robert Müller & Stefan Chmiela, 2024. "A Euclidean transformer for fast and stable machine learned force fields," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Zechen Tang & He Li & Peize Lin & Xiaoxun Gong & Gan Jin & Lixin He & Hong Jiang & Xinguo Ren & Wenhui Duan & Yong Xu, 2024. "A deep equivariant neural network approach for efficient hybrid density functional calculations," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Gaétan de Rassenfosse & Adam B. Jaffe & Joel Waldfogel, 2025.
"Intellectual Property and Creative Machines,"
Entrepreneurship and Innovation Policy and the Economy, University of Chicago Press, vol. 4(1), pages 47-79.
- Gaétan de Rassenfosse & Adam B. Jaffe & Joel Waldfogel, 2024. "Intellectual Property and Creative Machines," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, pages 47-79, National Bureau of Economic Research, Inc.
- Gaétan de Rassenfosse & Adam Jaffe & Joal Waldfogel, 2024. "Intellectual Property and Creative Machines," Working Papers 27, Chair of Science, Technology, and Innovation Policy.
- Gaétan de Rassenfosse & Adam B. Jaffe & Joel Waldfogel, 2024. "Intellectual Property and Creative Machines," NBER Working Papers 32698, National Bureau of Economic Research, Inc.
- Wang, Zixuan & Chen, Zijian & Wang, Boyuan & Wu, Chuang & Zhou, Chao & Peng, Yang & Zhang, Xinyu & Ni, Zongming & Chung, Chi-yung & Chan, Ching-chuen & Yang, Jian & Zhao, Haitao, 2025. "Digital manufacturing of perovskite materials and solar cells," Applied Energy, Elsevier, vol. 377(PB).
- Changwei Zhang & Yang Zhong & Zhi-Guo Tao & Xinming Qin & Honghui Shang & Zhenggang Lan & Oleg V. Prezhdo & Xin-Gao Gong & Weibin Chu & Hongjun Xiang, 2025. "Advancing nonadiabatic molecular dynamics simulations in solids with E(3) equivariant deep neural hamiltonians," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
- Luis M. Antunes & Keith T. Butler & Ricardo Grau-Crespo, 2024. "Crystal structure generation with autoregressive large language modeling," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- H. Wang & P. Y. Yang & W. J. Zhao & S. H. Ma & J. H. Hou & Q. F. He & C. L. Wu & H. A. Chen & Q. Wang & Q. Cheng & B. S. Guo & J. C. Qiao & W. J. Lu & S. J. Zhao & X. D. Xu & C. T. Liu & Y. Liu & C. W, 2024. "Lattice distortion enabling enhanced strength and plasticity in high entropy intermetallic alloy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Bin Han & Kuang Yu, 2025. "Refining potential energy surface through dynamical properties via differentiable molecular simulation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
- Alessio Fallani & Leonardo Medrano Sandonas & Alexandre Tkatchenko, 2024. "Inverse mapping of quantum properties to structures for chemical space of small organic molecules," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Kangming Li & Daniel Persaud & Kamal Choudhary & Brian DeCost & Michael Greenwood & Jason Hattrick-Simpers, 2023. "Exploiting redundancy in large materials datasets for efficient machine learning with less data," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Rama Oktavian & Ruben Goeminne & Lawson T. Glasby & Ping Song & Racheal Huynh & Omid Taheri Qazvini & Omid Ghaffari-Nik & Nima Masoumifard & Joan L. Cordiner & Pierre Hovington & Veronique Speybroeck , 2024. "Gas adsorption and framework flexibility of CALF-20 explored via experiments and simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Taoyong Cui & Chenyu Tang & Dongzhan Zhou & Yuqiang Li & Xingao Gong & Wanli Ouyang & Mao Su & Shufei Zhang, 2025. "Online test-time adaptation for better generalization of interatomic potentials to out-of-distribution data," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
- Lucien F. Krapp & Luciano A. Abriata & Fabio Cortés Rodriguez & Matteo Dal Peraro, 2023. "PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Tom Lee & Ji Qi & Chaitanya A. Gadre & Huaixun Huyan & Shu-Ting Ko & Yunxing Zuo & Chaojie Du & Jie Li & Toshihiro Aoki & Ruqian Wu & Jian Luo & Shyue Ping Ong & Xiaoqing Pan, 2023. "Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Cameron J. Owen & Yu Xie & Anders Johansson & Lixin Sun & Boris Kozinsky, 2024. "Low-index mesoscopic surface reconstructions of Au surfaces using Bayesian force fields," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Mingfeng Liu & Jiantao Wang & Junwei Hu & Peitao Liu & Haiyang Niu & Xuexi Yan & Jiangxu Li & Haile Yan & Bo Yang & Yan Sun & Chunlin Chen & Georg Kresse & Liang Zuo & Xing-Qiu Chen, 2024. "Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54554-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.