IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25134-0.html
   My bibliography  Save this article

Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order

Author

Listed:
  • Sheng Yin

    (Lawrence Berkeley National Laboratory
    University of California)

  • Yunxing Zuo

    (University of California San Diego)

  • Anas Abu-Odeh

    (University of California)

  • Hui Zheng

    (University of California San Diego)

  • Xiang-Guo Li

    (University of California San Diego)

  • Jun Ding

    (Xi’an Jiaotong University)

  • Shyue Ping Ong

    (University of California San Diego)

  • Mark Asta

    (Lawrence Berkeley National Laboratory
    University of California)

  • Robert O. Ritchie

    (Lawrence Berkeley National Laboratory
    University of California)

Abstract

Refractory high-entropy alloys (RHEAs) are designed for high elevated-temperature strength, with both edge and screw dislocations playing an important role for plastic deformation. However, they can also display a significant energetic driving force for chemical short-range ordering (SRO). Here, we investigate mechanisms underlying the mobilities of screw and edge dislocations in the body-centered cubic MoNbTaW RHEA over a wide temperature range using extensive molecular dynamics simulations based on a highly-accurate machine-learning interatomic potential. Further, we specifically evaluate how these mechanisms are affected by the presence of SRO. The mobility of edge dislocations is found to be enhanced by the presence of SRO, whereas the rate of double-kink nucleation in the motion of screw dislocations is reduced, although this influence of SRO appears to be attenuated at increasing temperature. Independent of the presence of SRO, a cross-slip locking mechanism is observed for the motion of screws, which provides for extra strengthening for refractory high-entropy alloy system.

Suggested Citation

  • Sheng Yin & Yunxing Zuo & Anas Abu-Odeh & Hui Zheng & Xiang-Guo Li & Jun Ding & Shyue Ping Ong & Mark Asta & Robert O. Ritchie, 2021. "Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25134-0
    DOI: 10.1038/s41467-021-25134-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25134-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25134-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Xing & Timothy J. Rupert & Xiaoqing Pan & Penghui Cao, 2024. "Neural network kinetics for exploring diffusion multiplicity and chemical ordering in compositionally complex materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. H. Wang & P. Y. Yang & W. J. Zhao & S. H. Ma & J. H. Hou & Q. F. He & C. L. Wu & H. A. Chen & Q. Wang & Q. Cheng & B. S. Guo & J. C. Qiao & W. J. Lu & S. J. Zhao & X. D. Xu & C. T. Liu & Y. Liu & C. W, 2024. "Lattice distortion enabling enhanced strength and plasticity in high entropy intermetallic alloy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Tom Lee & Ji Qi & Chaitanya A. Gadre & Huaixun Huyan & Shu-Ting Ko & Yunxing Zuo & Chaojie Du & Jie Li & Toshihiro Aoki & Ruqian Wu & Jian Luo & Shyue Ping Ong & Xiaoqing Pan, 2023. "Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Ying Han & Hangman Chen & Yongwen Sun & Jian Liu & Shaolou Wei & Bijun Xie & Zhiyu Zhang & Yingxin Zhu & Meng Li & Judith Yang & Wen Chen & Penghui Cao & Yang Yang, 2024. "Ubiquitous short-range order in multi-principal element alloys," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Yue Li & Ye Wei & Zhangwei Wang & Xiaochun Liu & Timoteo Colnaghi & Liuliu Han & Ziyuan Rao & Xuyang Zhou & Liam Huber & Raynol Dsouza & Yilun Gong & Jörg Neugebauer & Andreas Marek & Markus Rampp & S, 2023. "Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Keke Song & Rui Zhao & Jiahui Liu & Yanzhou Wang & Eric Lindgren & Yong Wang & Shunda Chen & Ke Xu & Ting Liang & Penghua Ying & Nan Xu & Zhiqiang Zhao & Jiuyang Shi & Junjie Wang & Shuang Lyu & Zezhu, 2024. "General-purpose machine-learned potential for 16 elemental metals and their alloys," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25134-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.