Inverse mapping of quantum properties to structures for chemical space of small organic molecules
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-50401-1
Download full text from publisher
References listed on IDEAS
- Kristof T. Schütt & Farhad Arbabzadah & Stefan Chmiela & Klaus R. Müller & Alexandre Tkatchenko, 2017. "Quantum-chemical insights from deep tensor neural networks," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
- Niklas W. A. Gebauer & Michael Gastegger & Stefaan S. P. Hessmann & Klaus-Robert Müller & Kristof T. Schütt, 2022. "Inverse design of 3d molecular structures with conditional generative neural networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Simon Batzner & Albert Musaelian & Lixin Sun & Mario Geiger & Jonathan P. Mailoa & Mordechai Kornbluth & Nicola Molinari & Tess E. Smidt & Boris Kozinsky, 2022. "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Michael Moret & Irene Pachon Angona & Leandro Cotos & Shen Yan & Kenneth Atz & Cyrill Brunner & Martin Baumgartner & Francesca Grisoni & Gisbert Schneider, 2023. "Leveraging molecular structure and bioactivity with chemical language models for de novo drug design," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Anastasiia V. Sadybekov & Vsevolod Katritch, 2023. "Computational approaches streamlining drug discovery," Nature, Nature, vol. 616(7958), pages 673-685, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yusong Wang & Tong Wang & Shaoning Li & Xinheng He & Mingyu Li & Zun Wang & Nanning Zheng & Bin Shao & Tie-Yan Liu, 2024. "Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Charlotte Loh & Thomas Christensen & Rumen Dangovski & Samuel Kim & Marin Soljačić, 2022. "Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- J. Thorben Frank & Oliver T. Unke & Klaus-Robert Müller & Stefan Chmiela, 2024. "A Euclidean transformer for fast and stable machine learned force fields," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Albert Musaelian & Simon Batzner & Anders Johansson & Lixin Sun & Cameron J. Owen & Mordechai Kornbluth & Boris Kozinsky, 2023. "Learning local equivariant representations for large-scale atomistic dynamics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Nikita Moshkov & Tim Becker & Kevin Yang & Peter Horvath & Vlado Dancik & Bridget K. Wagner & Paul A. Clemons & Shantanu Singh & Anne E. Carpenter & Juan C. Caicedo, 2023. "Predicting compound activity from phenotypic profiles and chemical structures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Xing Chen & Flavio Abreu Araujo & Mathieu Riou & Jacob Torrejon & Dafiné Ravelosona & Wang Kang & Weisheng Zhao & Julie Grollier & Damien Querlioz, 2022. "Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Xiao Tan & Yuan Zhou & Zuohua Ding & Yang Liu, 2021. "Selecting Correct Methods to Extract Fuzzy Rules from Artificial Neural Network," Mathematics, MDPI, vol. 9(11), pages 1-22, May.
- Kenneth Atz & Leandro Cotos & Clemens Isert & Maria Håkansson & Dorota Focht & Mattis Hilleke & David F. Nippa & Michael Iff & Jann Ledergerber & Carl C. G. Schiebroek & Valentina Romeo & Jan A. Hiss , 2024. "Prospective de novo drug design with deep interactome learning," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Xin Chen & Kexin Wang & Jianfang Chen & Chao Wu & Jun Mao & Yuanpeng Song & Yijing Liu & Zhenhua Shao & Xuemei Pu, 2024. "Integrative residue-intuitive machine learning and MD Approach to Unveil Allosteric Site and Mechanism for β2AR," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Stephan Thaler & Julija Zavadlav, 2021. "Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Wonho Zhung & Hyeongwoo Kim & Woo Youn Kim, 2024. "3D molecular generative framework for interaction-guided drug design," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Simon Batzner & Albert Musaelian & Lixin Sun & Mario Geiger & Jonathan P. Mailoa & Mordechai Kornbluth & Nicola Molinari & Tess E. Smidt & Boris Kozinsky, 2022. "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Rama Oktavian & Ruben Goeminne & Lawson T. Glasby & Ping Song & Racheal Huynh & Omid Taheri Qazvini & Omid Ghaffari-Nik & Nima Masoumifard & Joan L. Cordiner & Pierre Hovington & Veronique Speybroeck , 2024. "Gas adsorption and framework flexibility of CALF-20 explored via experiments and simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Lucien F. Krapp & Luciano A. Abriata & Fabio Cortés Rodriguez & Matteo Dal Peraro, 2023. "PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Arnau Comajuncosa-Creus & Guillem Jorba & Xavier Barril & Patrick Aloy, 2024. "Comprehensive detection and characterization of human druggable pockets through binding site descriptors," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
- Laura Isigkeit & Tim Hörmann & Espen Schallmayer & Katharina Scholz & Felix F. Lillich & Johanna H. M. Ehrler & Benedikt Hufnagel & Jasmin Büchner & Julian A. Marschner & Jörg Pabel & Ewgenij Proschak, 2024. "Automated design of multi-target ligands by generative deep learning," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Mingfeng Liu & Jiantao Wang & Junwei Hu & Peitao Liu & Haiyang Niu & Xuexi Yan & Jiangxu Li & Haile Yan & Bo Yang & Yan Sun & Chunlin Chen & Georg Kresse & Liang Zuo & Xing-Qiu Chen, 2024. "Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Jonathan P. Mailoa & Xin Li & Shengyu Zhang, 2024. "3T-VASP: fast ab-initio electrochemical reactor via multi-scale gradient energy minimization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Patrick Bryant & Atharva Kelkar & Andrea Guljas & Cecilia Clementi & Frank Noé, 2024. "Structure prediction of protein-ligand complexes from sequence information with Umol," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Hanwen Zhang & Veronika Juraskova & Fernanda Duarte, 2024. "Modelling chemical processes in explicit solvents with machine learning potentials," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50401-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.