IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53028-4.html
   My bibliography  Save this article

A deep equivariant neural network approach for efficient hybrid density functional calculations

Author

Listed:
  • Zechen Tang

    (Tsinghua University)

  • He Li

    (Tsinghua University
    Tsinghua University)

  • Peize Lin

    (Chinese Academy of Sciences
    Songshan Lake Materials Laboratory
    Hefei Comprehensive National Science Center)

  • Xiaoxun Gong

    (Tsinghua University
    Peking University)

  • Gan Jin

    (University of Science and Technology of China)

  • Lixin He

    (Hefei Comprehensive National Science Center
    University of Science and Technology of China)

  • Hong Jiang

    (Peking University)

  • Xinguo Ren

    (Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Wenhui Duan

    (Tsinghua University
    Tsinghua University
    Frontier Science Center for Quantum Information)

  • Yong Xu

    (Tsinghua University
    Frontier Science Center for Quantum Information
    RIKEN Center for Emergent Matter Science (CEMS))

Abstract

Hybrid density functional calculations are essential for accurate description of electronic structure, yet their widespread use is restricted by the substantial computational cost. Here we develop DeepH-hybrid, a deep equivariant neural network method for learning the hybrid-functional Hamiltonian as a function of material structure, which circumvents the time-consuming self-consistent field iterations and enables the study of large-scale materials with hybrid-functional accuracy. Our extensive experiments demonstrate good reliability as well as effective transferability and efficiency of the method. As a notable application, DeepH-hybrid is applied to study large-supercell Moiré-twisted materials, offering the first case study on how the inclusion of exact exchange affects flat bands in magic-angle twisted bilayer graphene. The work generalizes deep-learning electronic structure methods to beyond conventional density functional theory, facilitating the development of deep-learning-based ab initio methods.

Suggested Citation

  • Zechen Tang & He Li & Peize Lin & Xiaoxun Gong & Gan Jin & Lixin He & Hong Jiang & Xinguo Ren & Wenhui Duan & Yong Xu, 2024. "A deep equivariant neural network approach for efficient hybrid density functional calculations," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53028-4
    DOI: 10.1038/s41467-024-53028-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53028-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53028-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Albert Musaelian & Simon Batzner & Anders Johansson & Lixin Sun & Cameron J. Owen & Mordechai Kornbluth & Boris Kozinsky, 2023. "Learning local equivariant representations for large-scale atomistic dynamics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Xiaoxun Gong & He Li & Nianlong Zou & Runzhang Xu & Wenhui Duan & Yong Xu, 2023. "General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Simon Batzner & Albert Musaelian & Lixin Sun & Mario Geiger & Jonathan P. Mailoa & Mordechai Kornbluth & Nicola Molinari & Tess E. Smidt & Boris Kozinsky, 2022. "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. K. T. Schütt & M. Gastegger & A. Tkatchenko & K.-R. Müller & R. J. Maurer, 2019. "Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Oliver T. Unke & Stefan Chmiela & Michael Gastegger & Kristof T. Schütt & Huziel E. Sauceda & Klaus-Robert Müller, 2021. "SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. Jiaqi Cai & Eric Anderson & Chong Wang & Xiaowei Zhang & Xiaoyu Liu & William Holtzmann & Yinong Zhang & Fengren Fan & Takashi Taniguchi & Kenji Watanabe & Ying Ran & Ting Cao & Liang Fu & Di Xiao & W, 2023. "Signatures of fractional quantum anomalous Hall states in twisted MoTe2," Nature, Nature, vol. 622(7981), pages 63-68, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziduo Yang & Yi-Ming Zhao & Xian Wang & Xiaoqing Liu & Xiuying Zhang & Yifan Li & Qiujie Lv & Calvin Yu-Chian Chen & Lei Shen, 2024. "Scalable crystal structure relaxation using an iteration-free deep generative model with uncertainty quantification," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. J. Thorben Frank & Oliver T. Unke & Klaus-Robert Müller & Stefan Chmiela, 2024. "A Euclidean transformer for fast and stable machine learned force fields," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Xiaoxun Gong & He Li & Nianlong Zou & Runzhang Xu & Wenhui Duan & Yong Xu, 2023. "General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yusong Wang & Tong Wang & Shaoning Li & Xinheng He & Mingyu Li & Zun Wang & Nanning Zheng & Bin Shao & Tie-Yan Liu, 2024. "Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Chao Liang & Yilimiranmu Rouzhahong & Caiyuan Ye & Chong Li & Biao Wang & Huashan Li, 2023. "Material symmetry recognition and property prediction accomplished by crystal capsule representation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Laura Lewis & Hsin-Yuan Huang & Viet T. Tran & Sebastian Lehner & Richard Kueng & John Preskill, 2024. "Improved machine learning algorithm for predicting ground state properties," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Andreas Erlebach & Martin Šípka & Indranil Saha & Petr Nachtigall & Christopher J. Heard & Lukáš Grajciar, 2024. "A reactive neural network framework for water-loaded acidic zeolites," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Li Zheng & Konstantinos Karapiperis & Siddhant Kumar & Dennis M. Kochmann, 2023. "Unifying the design space and optimizing linear and nonlinear truss metamaterials by generative modeling," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Amin Alibakhshi & Bernd Hartke, 2022. "Implicitly perturbed Hamiltonian as a class of versatile and general-purpose molecular representations for machine learning," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Jesse C. Hoke & Yifan Li & Julian May-Mann & Kenji Watanabe & Takashi Taniguchi & Barry Bradlyn & Taylor L. Hughes & Benjamin E. Feldman, 2024. "Uncovering the spin ordering in magic-angle graphene via edge state equilibration," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Kit Joll & Philipp Schienbein & Kevin M. Rosso & Jochen Blumberger, 2024. "Machine learning the electric field response of condensed phase systems using perturbed neural network potentials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Yaolong Zhang & Bin Jiang, 2023. "Universal machine learning for the response of atomistic systems to external fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Wei Lu & Jixian Zhang & Weifeng Huang & Ziqiao Zhang & Xiangyu Jia & Zhenyu Wang & Leilei Shi & Chengtao Li & Peter G. Wolynes & Shuangjia Zheng, 2024. "DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Adil Kabylda & Valentin Vassilev-Galindo & Stefan Chmiela & Igor Poltavsky & Alexandre Tkatchenko, 2023. "Efficient interatomic descriptors for accurate machine learning force fields of extended molecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Junjie Wang & Yong Wang & Haoting Zhang & Ziyang Yang & Zhixin Liang & Jiuyang Shi & Hui-Tian Wang & Dingyu Xing & Jian Sun, 2024. "E(n)-Equivariant cartesian tensor message passing interatomic potential," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Yuanming Bai & Leslie Vogt-Maranto & Mark E. Tuckerman & William J. Glover, 2022. "Machine learning the Hohenberg-Kohn map for molecular excited states," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Alessio Fallani & Leonardo Medrano Sandonas & Alexandre Tkatchenko, 2024. "Inverse mapping of quantum properties to structures for chemical space of small organic molecules," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Rama Oktavian & Ruben Goeminne & Lawson T. Glasby & Ping Song & Racheal Huynh & Omid Taheri Qazvini & Omid Ghaffari-Nik & Nima Masoumifard & Joan L. Cordiner & Pierre Hovington & Veronique Speybroeck , 2024. "Gas adsorption and framework flexibility of CALF-20 explored via experiments and simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Lucien F. Krapp & Luciano A. Abriata & Fabio Cortés Rodriguez & Matteo Dal Peraro, 2023. "PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Qiangqiang Gu & Zhanghao Zhouyin & Shishir Kumar Pandey & Peng Zhang & Linfeng Zhang & Weinan E, 2024. "Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53028-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.