Scalable crystal structure relaxation using an iteration-free deep generative model with uncertainty quantification
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-52378-3
Download full text from publisher
References listed on IDEAS
- Amil Merchant & Simon Batzner & Samuel S. Schoenholz & Muratahan Aykol & Gowoon Cheon & Ekin Dogus Cubuk, 2023. "Scaling deep learning for materials discovery," Nature, Nature, vol. 624(7990), pages 80-85, December.
- Albert Musaelian & Simon Batzner & Anders Johansson & Lixin Sun & Cameron J. Owen & Mordechai Kornbluth & Boris Kozinsky, 2023. "Learning local equivariant representations for large-scale atomistic dynamics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Xiaoxun Gong & He Li & Nianlong Zou & Runzhang Xu & Wenhui Duan & Yong Xu, 2023. "General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Simon Batzner & Albert Musaelian & Lixin Sun & Mario Geiger & Jonathan P. Mailoa & Mordechai Kornbluth & Nicola Molinari & Tess E. Smidt & Boris Kozinsky, 2022. "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Oliver T. Unke & Stefan Chmiela & Michael Gastegger & Kristof T. Schütt & Huziel E. Sauceda & Klaus-Robert Müller, 2021. "SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
- Nathan J. Szymanski & Bernardus Rendy & Yuxing Fei & Rishi E. Kumar & Tanjin He & David Milsted & Matthew J. McDermott & Max Gallant & Ekin Dogus Cubuk & Amil Merchant & Haegyeom Kim & Anubhav Jain & , 2023. "An autonomous laboratory for the accelerated synthesis of novel materials," Nature, Nature, vol. 624(7990), pages 86-91, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zechen Tang & He Li & Peize Lin & Xiaoxun Gong & Gan Jin & Lixin He & Hong Jiang & Xinguo Ren & Wenhui Duan & Yong Xu, 2024. "A deep equivariant neural network approach for efficient hybrid density functional calculations," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Keke Song & Rui Zhao & Jiahui Liu & Yanzhou Wang & Eric Lindgren & Yong Wang & Shunda Chen & Ke Xu & Ting Liang & Penghua Ying & Nan Xu & Zhiqiang Zhao & Jiuyang Shi & Junjie Wang & Shuang Lyu & Zezhu, 2024. "General-purpose machine-learned potential for 16 elemental metals and their alloys," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- J. Thorben Frank & Oliver T. Unke & Klaus-Robert Müller & Stefan Chmiela, 2024. "A Euclidean transformer for fast and stable machine learned force fields," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Yusong Wang & Tong Wang & Shaoning Li & Xinheng He & Mingyu Li & Zun Wang & Nanning Zheng & Bin Shao & Tie-Yan Liu, 2024. "Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Jonathan P. Mailoa & Xin Li & Shengyu Zhang, 2024. "3T-VASP: fast ab-initio electrochemical reactor via multi-scale gradient energy minimization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Bowen Hou & Jinyuan Wu & Diana Y. Qiu, 2024. "Unsupervised representation learning of Kohn–Sham states and consequences for downstream predictions of many-body effects," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Grigorii Skorupskii & Fabio Orlandi & Iñigo Robredo & Milena Jovanovic & Rinsuke Yamada & Fatmagül Katmer & Maia G. Vergniory & Pascal Manuel & Max Hirschberger & Leslie M. Schoop, 2024. "Designing giant Hall response in layered topological semimetals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Gaétan de Rassenfosse & Adam B. Jaffe & Joel Waldfogel, 2024.
"Intellectual Property and Creative Machines,"
NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4,
National Bureau of Economic Research, Inc.
- Gaétan de Rassenfosse & Adam Jaffe & Joal Waldfogel, 2024. "Intellectual Property and Creative Machines," Working Papers 27, Chair of Science, Technology, and Innovation Policy.
- Gaétan de Rassenfosse & Adam B. Jaffe & Joel Waldfogel, 2024. "Intellectual Property and Creative Machines," NBER Working Papers 32698, National Bureau of Economic Research, Inc.
- Andreas Erlebach & Martin Šípka & Indranil Saha & Petr Nachtigall & Christopher J. Heard & Lukáš Grajciar, 2024. "A reactive neural network framework for water-loaded acidic zeolites," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Li Zheng & Konstantinos Karapiperis & Siddhant Kumar & Dennis M. Kochmann, 2023. "Unifying the design space and optimizing linear and nonlinear truss metamaterials by generative modeling," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- David Buterez & Jon Paul Janet & Steven J. Kiddle & Dino Oglic & Pietro Lió, 2024. "Transfer learning with graph neural networks for improved molecular property prediction in the multi-fidelity setting," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Luis M. Antunes & Keith T. Butler & Ricardo Grau-Crespo, 2024. "Crystal structure generation with autoregressive large language modeling," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
- Kit Joll & Philipp Schienbein & Kevin M. Rosso & Jochen Blumberger, 2024. "Machine learning the electric field response of condensed phase systems using perturbed neural network potentials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Yaolong Zhang & Bin Jiang, 2023. "Universal machine learning for the response of atomistic systems to external fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Wei Lu & Jixian Zhang & Weifeng Huang & Ziqiao Zhang & Xiangyu Jia & Zhenyu Wang & Leilei Shi & Chengtao Li & Peter G. Wolynes & Shuangjia Zheng, 2024. "DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Adil Kabylda & Valentin Vassilev-Galindo & Stefan Chmiela & Igor Poltavsky & Alexandre Tkatchenko, 2023. "Efficient interatomic descriptors for accurate machine learning force fields of extended molecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Junjie Wang & Yong Wang & Haoting Zhang & Ziyang Yang & Zhixin Liang & Jiuyang Shi & Hui-Tian Wang & Dingyu Xing & Jian Sun, 2024. "E(n)-Equivariant cartesian tensor message passing interatomic potential," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Alessio Fallani & Leonardo Medrano Sandonas & Alexandre Tkatchenko, 2024. "Inverse mapping of quantum properties to structures for chemical space of small organic molecules," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Xiaoxun Gong & He Li & Nianlong Zou & Runzhang Xu & Wenhui Duan & Yong Xu, 2023. "General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52378-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.