IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52378-3.html
   My bibliography  Save this article

Scalable crystal structure relaxation using an iteration-free deep generative model with uncertainty quantification

Author

Listed:
  • Ziduo Yang

    (National University of Singapore
    Shenzhen Campus of Sun Yat-sen University
    Peking University Shenzhen Graduate School)

  • Yi-Ming Zhao

    (National University of Singapore)

  • Xian Wang

    (National University of Singapore)

  • Xiaoqing Liu

    (National University of Singapore)

  • Xiuying Zhang

    (National University of Singapore)

  • Yifan Li

    (National University of Singapore)

  • Qiujie Lv

    (National University of Singapore
    Shenzhen Campus of Sun Yat-sen University)

  • Calvin Yu-Chian Chen

    (Peking University Shenzhen Graduate School
    Peking University Shenzhen Graduate School
    China Medical University Hospital
    Asia University)

  • Lei Shen

    (National University of Singapore
    National University of Singapore (Chongqing) Research Institute)

Abstract

In computational molecular and materials science, determining equilibrium structures is the crucial first step for accurate subsequent property calculations. However, the recent discovery of millions of new crystals and super large twisted structures has challenged traditional computational methods, both ab initio and machine-learning-based, due to their computationally intensive iterative processes. To address these scalability issues, here we introduce DeepRelax, a deep generative model capable of performing geometric crystal structure relaxation rapidly and without iterations. DeepRelax learns the equilibrium structural distribution, enabling it to predict relaxed structures directly from their unrelaxed ones. The ability to perform structural relaxation at the millisecond level per structure, combined with the scalability of parallel processing, makes DeepRelax particularly useful for large-scale virtual screening. We demonstrate DeepRelax’s reliability and robustness by applying it to five diverse databases, including oxides, Materials Project, two-dimensional materials, van der Waals crystals, and crystals with point defects. DeepRelax consistently shows high accuracy and efficiency, validated by density functional theory calculations. Finally, we enhance its trustworthiness by integrating uncertainty quantification. This work significantly accelerates computational workflows, offering a robust and trustworthy machine-learning method for material discovery and advancing the application of AI for science.

Suggested Citation

  • Ziduo Yang & Yi-Ming Zhao & Xian Wang & Xiaoqing Liu & Xiuying Zhang & Yifan Li & Qiujie Lv & Calvin Yu-Chian Chen & Lei Shen, 2024. "Scalable crystal structure relaxation using an iteration-free deep generative model with uncertainty quantification," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52378-3
    DOI: 10.1038/s41467-024-52378-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52378-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52378-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amil Merchant & Simon Batzner & Samuel S. Schoenholz & Muratahan Aykol & Gowoon Cheon & Ekin Dogus Cubuk, 2023. "Scaling deep learning for materials discovery," Nature, Nature, vol. 624(7990), pages 80-85, December.
    2. Albert Musaelian & Simon Batzner & Anders Johansson & Lixin Sun & Cameron J. Owen & Mordechai Kornbluth & Boris Kozinsky, 2023. "Learning local equivariant representations for large-scale atomistic dynamics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Xiaoxun Gong & He Li & Nianlong Zou & Runzhang Xu & Wenhui Duan & Yong Xu, 2023. "General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Simon Batzner & Albert Musaelian & Lixin Sun & Mario Geiger & Jonathan P. Mailoa & Mordechai Kornbluth & Nicola Molinari & Tess E. Smidt & Boris Kozinsky, 2022. "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Oliver T. Unke & Stefan Chmiela & Michael Gastegger & Kristof T. Schütt & Huziel E. Sauceda & Klaus-Robert Müller, 2021. "SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. Nathan J. Szymanski & Bernardus Rendy & Yuxing Fei & Rishi E. Kumar & Tanjin He & David Milsted & Matthew J. McDermott & Max Gallant & Ekin Dogus Cubuk & Amil Merchant & Haegyeom Kim & Anubhav Jain & , 2023. "An autonomous laboratory for the accelerated synthesis of novel materials," Nature, Nature, vol. 624(7990), pages 86-91, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zechen Tang & He Li & Peize Lin & Xiaoxun Gong & Gan Jin & Lixin He & Hong Jiang & Xinguo Ren & Wenhui Duan & Yong Xu, 2024. "A deep equivariant neural network approach for efficient hybrid density functional calculations," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. J. Thorben Frank & Oliver T. Unke & Klaus-Robert Müller & Stefan Chmiela, 2024. "A Euclidean transformer for fast and stable machine learned force fields," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Yusong Wang & Tong Wang & Shaoning Li & Xinheng He & Mingyu Li & Zun Wang & Nanning Zheng & Bin Shao & Tie-Yan Liu, 2024. "Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Gaétan de Rassenfosse & Adam B. Jaffe & Joel Waldfogel, 2024. "Intellectual Property and Creative Machines," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    5. Andreas Erlebach & Martin Šípka & Indranil Saha & Petr Nachtigall & Christopher J. Heard & Lukáš Grajciar, 2024. "A reactive neural network framework for water-loaded acidic zeolites," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Li Zheng & Konstantinos Karapiperis & Siddhant Kumar & Dennis M. Kochmann, 2023. "Unifying the design space and optimizing linear and nonlinear truss metamaterials by generative modeling," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. David Buterez & Jon Paul Janet & Steven J. Kiddle & Dino Oglic & Pietro Lió, 2024. "Transfer learning with graph neural networks for improved molecular property prediction in the multi-fidelity setting," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    9. Kit Joll & Philipp Schienbein & Kevin M. Rosso & Jochen Blumberger, 2024. "Machine learning the electric field response of condensed phase systems using perturbed neural network potentials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Yaolong Zhang & Bin Jiang, 2023. "Universal machine learning for the response of atomistic systems to external fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Wei Lu & Jixian Zhang & Weifeng Huang & Ziqiao Zhang & Xiangyu Jia & Zhenyu Wang & Leilei Shi & Chengtao Li & Peter G. Wolynes & Shuangjia Zheng, 2024. "DynamicBind: predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Adil Kabylda & Valentin Vassilev-Galindo & Stefan Chmiela & Igor Poltavsky & Alexandre Tkatchenko, 2023. "Efficient interatomic descriptors for accurate machine learning force fields of extended molecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Junjie Wang & Yong Wang & Haoting Zhang & Ziyang Yang & Zhixin Liang & Jiuyang Shi & Hui-Tian Wang & Dingyu Xing & Jian Sun, 2024. "E(n)-Equivariant cartesian tensor message passing interatomic potential," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Alessio Fallani & Leonardo Medrano Sandonas & Alexandre Tkatchenko, 2024. "Inverse mapping of quantum properties to structures for chemical space of small organic molecules," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Xiaoxun Gong & He Li & Nianlong Zou & Runzhang Xu & Wenhui Duan & Yong Xu, 2023. "General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Rama Oktavian & Ruben Goeminne & Lawson T. Glasby & Ping Song & Racheal Huynh & Omid Taheri Qazvini & Omid Ghaffari-Nik & Nima Masoumifard & Joan L. Cordiner & Pierre Hovington & Veronique Speybroeck , 2024. "Gas adsorption and framework flexibility of CALF-20 explored via experiments and simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Lucien F. Krapp & Luciano A. Abriata & Fabio Cortés Rodriguez & Matteo Dal Peraro, 2023. "PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Chang Jiang & Hongyuan He & Hongquan Guo & Xiaoxin Zhang & Qingyang Han & Yanhong Weng & Xianzhu Fu & Yinlong Zhu & Ning Yan & Xin Tu & Yifei Sun, 2024. "Transfer learning guided discovery of efficient perovskite oxide for alkaline water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Chao Liang & Yilimiranmu Rouzhahong & Caiyuan Ye & Chong Li & Biao Wang & Huashan Li, 2023. "Material symmetry recognition and property prediction accomplished by crystal capsule representation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Albert Musaelian & Simon Batzner & Anders Johansson & Lixin Sun & Cameron J. Owen & Mordechai Kornbluth & Boris Kozinsky, 2023. "Learning local equivariant representations for large-scale atomistic dynamics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52378-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.