IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54435-3.html
   My bibliography  Save this article

Acid-exposed and hypoxic cancer cells do not overlap but are interdependent for unsaturated fatty acid resources

Author

Listed:
  • Katarzyna Głowacka

    (UCLouvain)

  • Sébastien Ibanez

    (UCLouvain)

  • Ophélie Renoult

    (UCLouvain)

  • Perrine Vermonden

    (UCLouvain)

  • Maria Virginia Giolito

    (UCLouvain)

  • Kübra Özkan

    (UCLouvain)

  • Charline Degavre

    (UCLouvain)

  • Léo Aubert

    (UCLouvain)

  • Céline Guilbaud

    (UCLouvain)

  • Florine Laloux-Morris

    (UCLouvain)

  • Elena Richiardone

    (UCLouvain)

  • Jérôme Ambroise

    (UCLouvain)

  • Caroline Bouzin

    (UCLouvain)

  • Davide Brusa

    (UCLouvain)

  • Jonas Dehairs

    (KU Leuven and Leuven Cancer Institute (LKI))

  • Johan Swinnen

    (KU Leuven and Leuven Cancer Institute (LKI))

  • Cyril Corbet

    (UCLouvain)

  • Yvan Larondelle

    (UCLouvain)

  • Olivier Feron

    (UCLouvain
    WEL Research Institute)

Abstract

Cancer cells in acidic tumor regions are aggressive and a key therapeutic target, but distinguishing between acid-exposed and hypoxic cells is challenging. Here, we use carbonic anhydrase 9 (CA9) antibodies to mark acidic areas in both hypoxic and respiring tumor areas, along with an HRE-GFP reporter for hypoxia, to isolate distinct cell populations from 3D tumor spheroids. Transcriptomic analysis of CA9-positive, hypoxia-negative cells highlights enriched fatty acid desaturase activity. Inhibiting or silencing stearoyl-CoA desaturase-1 (SCD1) induces ferroptosis in CA9-positive acidic cancer cells and delays mouse tumor growth, an effect enhanced by omega-3 fatty acid supplementation. Using acid-exposed cancer cells and patient-derived tumor organoids, we show that SCD1 inhibition increases acidic cancer cell reliance on external mono-unsaturated fatty acids, depriving hypoxic cells of essential resources. This bystander effect provides unbiased evidence for a lack of full overlap between hypoxic and acidic tumor compartments, highlighting a rationale for targeting desaturase activity in cancer.

Suggested Citation

  • Katarzyna Głowacka & Sébastien Ibanez & Ophélie Renoult & Perrine Vermonden & Maria Virginia Giolito & Kübra Özkan & Charline Degavre & Léo Aubert & Céline Guilbaud & Florine Laloux-Morris & Elena Ric, 2024. "Acid-exposed and hypoxic cancer cells do not overlap but are interdependent for unsaturated fatty acid resources," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54435-3
    DOI: 10.1038/s41467-024-54435-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54435-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54435-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Evan C. Lien & Anna M. Westermark & Yin Zhang & Chen Yuan & Zhaoqi Li & Allison N. Lau & Kiera M. Sapp & Brian M. Wolpin & Matthew G. Vander Heiden, 2021. "Low glycaemic diets alter lipid metabolism to influence tumour growth," Nature, Nature, vol. 599(7884), pages 302-307, November.
    2. Jessalyn M. Ubellacker & Alpaslan Tasdogan & Vijayashree Ramesh & Bo Shen & Evann C. Mitchell & Misty S. Martin-Sandoval & Zhimin Gu & Michael L. McCormick & Alison B. Durham & Douglas R. Spitz & Zhiy, 2020. "Lymph protects metastasizing melanoma cells from ferroptosis," Nature, Nature, vol. 585(7823), pages 113-118, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingming Wu & Xiao Zhang & Weijie Zhang & Yi Shiou Chiou & Wenchang Qian & Xiangtian Liu & Min Zhang & Hong Yan & Shilan Li & Tao Li & Xinghua Han & Pengxu Qian & Suling Liu & Yueyin Pan & Peter E. Lo, 2022. "Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Niranjan Venkateswaran & Roy Garcia & M. Carmen Lafita-Navarro & Yi-Heng Hao & Lizbeth Perez-Castro & Pedro A. S. Nogueira & Ashley Solmonson & Ilgen Mender & Jessica A. Kilgore & Shun Fang & Isabella, 2024. "Tryptophan fuels MYC-dependent liver tumorigenesis through indole 3-pyruvate synthesis," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Caterina Bartolacci & Cristina Andreani & Gonçalo Vale & Stefano Berto & Margherita Melegari & Anna Colleen Crouch & Dodge L. Baluya & George Kemble & Kurt Hodges & Jacqueline Starrett & Katerina Poli, 2022. "Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Pranavi Koppula & Guang Lei & Yilei Zhang & Yuelong Yan & Chao Mao & Lavanya Kondiparthi & Jiejun Shi & Xiaoguang Liu & Amber Horbath & Molina Das & Wei Li & Masha V. Poyurovsky & Kellen Olszewski & B, 2022. "A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Ziheng Chen & I-Lin Ho & Melinda Soeung & Er-Yen Yen & Jintan Liu & Liang Yan & Johnathon L. Rose & Sanjana Srinivasan & Shan Jiang & Q. Edward Chang & Ningping Feng & Jason P. Gay & Qi Wang & Jing Wa, 2023. "Ether phospholipids are required for mitochondrial reactive oxygen species homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Odeta Meçe & Diede Houbaert & Maria-Livia Sassano & Tania Durré & Hannelore Maes & Marco Schaaf & Sanket More & Maarten Ganne & Melissa García-Caballero & Mila Borri & Jelle Verhoeven & Madhur Agrawal, 2022. "Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Mihee Oh & Seo Young Jang & Ji-Yoon Lee & Jong Woo Kim & Youngae Jung & Jiwoo Kim & Jinho Seo & Tae-Su Han & Eunji Jang & Hye Young Son & Dain Kim & Min Wook Kim & Jin-Sung Park & Kwon-Ho Song & Kyoun, 2023. "The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Yanjie Tan & Zhenzhou Huang & Yi Jin & Jiaying Wang & Hongjun Fan & Yangyang Liu & Liang Zhang & Yue Wu & Peiwei Liu & Tianliang Li & Jie Ran & He Tian & Sin Man Lam & Min Liu & Jun Zhou & Yunfan Yang, 2024. "Lipid droplets sequester palmitic acid to disrupt endothelial ciliation and exacerbate atherosclerosis in male mice," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Shunli Fu & Lili Chang & Shujun Liu & Tong Gao & Xiao Sang & Zipeng Zhang & Weiwei Mu & Xiaoqing Liu & Shuang Liang & Han Yang & Huizhen Yang & Qingping Ma & Yongjun Liu & Na Zhang, 2023. "Temperature sensitive liposome based cancer nanomedicine enables tumour lymph node immune microenvironment remodelling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Giovanni Tosi & Alessandro Paoli & Gaia Zuccolotto & Emilia Turco & Manuela Simonato & Daniela Tosoni & Francesco Tucci & Pietro Lugato & Monica Giomo & Nicola Elvassore & Antonio Rosato & Paola Cogo , 2024. "Cancer cell stiffening via CoQ10 and UBIAD1 regulates ECM signaling and ferroptosis in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54435-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.