IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54394-9.html
   My bibliography  Save this article

Weakened large-scale surface heat flux feedback at midlatitudes under global warming

Author

Listed:
  • Zhiqiao Wang

    (Ocean University of China
    Laoshan Laboratory
    Ocean University of China
    Ocean University of China)

  • Zhao Jing

    (Ocean University of China
    Laoshan Laboratory)

  • Fengfei Song

    (Ocean University of China
    Laoshan Laboratory)

Abstract

The surface heat flux feedback, which refers to the response of surface heat flux anomaly to the underlying sea surface temperature anomaly (SSTA), is one of the key processes in air-sea interaction. It plays an important role in regulating various aspects of the climate system, ranging from local SSTA persistence to the global overturning circulation and major climate modes. Yet its change under greenhouse gas-induced warming remains unknown. Here, using an ensemble of global climate simulations under a high radiative forcing scenario, we demonstrate that the intensity of surface heat flux feedback for spatially large-scale SSTA at the midlatitudes is projected to halve by the end of the 21st century, compared to pre-industrial levels. Such weakening is primarily attributed to a more stabilized marine atmospheric boundary layer, which diminishes the air-sea thermal disequilibrium caused by SSTA. In a warming climate, the variance of midlatitude SSTA at large spatial scales is expected to be significantly enhanced in response to the weakened surface heat flux feedback.

Suggested Citation

  • Zhiqiao Wang & Zhao Jing & Fengfei Song, 2024. "Weakened large-scale surface heat flux feedback at midlatitudes under global warming," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54394-9
    DOI: 10.1038/s41467-024-54394-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54394-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54394-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefan Rahmstorf & Jason E. Box & Georg Feulner & Michael E. Mann & Alexander Robinson & Scott Rutherford & Erik J. Schaffernicht, 2015. "Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation," Nature Climate Change, Nature, vol. 5(5), pages 475-480, May.
    2. Qihua Peng & Shang-Ping Xie & Dongxiao Wang & Xiao-Tong Zheng & Hong Zhang, 2019. "Coupled ocean-atmosphere dynamics of the 2017 extreme coastal El Niño," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Xiaohui Ma & Xingzhi Zhang & Lixin Wu & Zhili Tang & Peiran Yang & Fengfei Song & Zhao Jing & Hui Chen & Yushan Qu & Man Yuan & Zhaohui Chen & Bolan Gan, 2024. "Midlatitude mesoscale thermal Air-sea interaction enhanced by greenhouse warming," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Jia-Rui Shi & Benjamin D. Santer & Young-Oh Kwon & Susan E. Wijffels, 2024. "The emerging human influence on the seasonal cycle of sea surface temperature," Nature Climate Change, Nature, vol. 14(4), pages 364-372, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sang-Ki Lee & Dongmin Kim & Fabian A. Gomez & Hosmay Lopez & Denis L. Volkov & Shenfu Dong & Rick Lumpkin & Stephen Yeager, 2024. "A pause in the weakening of the Atlantic meridional overturning circulation since the early 2010s," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Pécastaing, Nicolas & Salavarriga, Juan, 2022. "The potential impact of fishing in peruvian marine protected areas (MPAs) on artisanal fishery poverty during El Niño events," Ecological Economics, Elsevier, vol. 202(C).
    3. Hiroshi Sumata & Laura Steur & Sebastian Gerland & Dmitry V. Divine & Olga Pavlova, 2022. "Unprecedented decline of Arctic sea ice outflow in 2018," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Xuan Shan & Shantong Sun & Lixin Wu & Michael Spall, 2024. "Role of the Labrador Current in the Atlantic Meridional Overturning Circulation response to greenhouse warming," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Sara Berglund & Kristofer Döös & Sjoerd Groeskamp & Trevor J. McDougall, 2022. "The downward spiralling nature of the North Atlantic Subtropical Gyre," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Dmitry Orlov & Marija Menshakova & Tomas Thierfelder & Yulia Zaika & Sepp Böhme & Birgitta Evengard & Natalia Pshenichnaya, 2020. "Healthy Ecosystems Are a Prerequisite for Human Health—A Call for Action in the Era of Climate Change with a Focus on Russia," IJERPH, MDPI, vol. 17(22), pages 1-11, November.
    7. Denis L. Volkov & Ryan H. Smith & Rigoberto F. Garcia & David A. Smeed & Ben I. Moat & William E. Johns & Molly O. Baringer, 2024. "Florida Current transport observations reveal four decades of steady state," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Jens Terhaar & Linus Vogt & Nicholas P. Foukal, 2025. "Atlantic overturning inferred from air-sea heat fluxes indicates no decline since the 1960s," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    9. Denis L. Volkov & Kate Zhang & William E. Johns & Joshua K. Willis & Will Hobbs & Marlos Goes & Hong Zhang & Dimitris Menemenlis, 2023. "Atlantic meridional overturning circulation increases flood risk along the United States southeast coast," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Qinxue Gu & Melissa Gervais & Gokhan Danabasoglu & Who M. Kim & Frederic Castruccio & Elizabeth Maroon & Shang-Ping Xie, 2024. "Wide range of possible trajectories of North Atlantic climate in a warming world," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Carlo Grillenzoni & Elisa Carraro, 2021. "Sequential tests of causality between environmental time series: With application to the global warming theory," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    12. Maya Ben-Yami & Vanessa Skiba & Sebastian Bathiany & Niklas Boers, 2023. "Uncertainties in critical slowing down indicators of observation-based fingerprints of the Atlantic Overturning Circulation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Yi Zhong & Ning Tan & Jordan T. Abell & Chijun Sun & Stefanie Kaboth-Bahr & Heather L. Ford & Timothy D. Herbert & Alex Pullen & Keiji Horikawa & Jimin Yu & Torben Struve & Michael E. Weber & Peter D., 2024. "Role of land-ocean interactions in stepwise Northern Hemisphere Glaciation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Simon L. L. Michel & Didier Swingedouw & Pablo Ortega & Guillaume Gastineau & Juliette Mignot & Gerard McCarthy & Myriam Khodri, 2022. "Early warning signal for a tipping point suggested by a millennial Atlantic Multidecadal Variability reconstruction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Giuseppe Lucia & Davide Zanchettin & Amos Winter & Hai Cheng & Angelo Rubino & Osmín J. Vásquez & Juan Pablo Bernal & Mario Cu-Xi & Matthew S. Lachniet, 2024. "Atlantic Ocean thermal forcing of Central American rainfall over 140,000 years," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Fukai Liu & Xun Li & Yiyong Luo & Wenju Cai & Jian Lu & Xiao-Tong Zheng & Sarah M. Kang & Hai Wang & Lei Zhou, 2024. "Increased Asian aerosols drive a slowdown of Atlantic Meridional Overturning Circulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Chenyu Zhu & Zhengyu Liu & Shaoqing Zhang & Lixin Wu, 2023. "Likely accelerated weakening of Atlantic overturning circulation emerges in optimal salinity fingerprint," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Robert Kopp & Benjamin Horton & Andrew Kemp & Claudia Tebaldi, 2015. "Past and future sea-level rise along the coast of North Carolina, USA," Climatic Change, Springer, vol. 132(4), pages 693-707, October.
    19. Roman Olson & Soon-Il An & Yanan Fan & Jason P Evans, 2019. "Accounting for skill in trend, variability, and autocorrelation facilitates better multi-model projections: Application to the AMOC and temperature time series," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-24, April.
    20. Christy M. Foran & Kelsie M. Baker & Michael J. Narcisi & Igor Linkov, 2015. "Susceptibility assessment of urban tree species in Cambridge, MA, from future climatic extremes," Environment Systems and Decisions, Springer, vol. 35(3), pages 389-400, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54394-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.