IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44597-x.html
   My bibliography  Save this article

Increased Asian aerosols drive a slowdown of Atlantic Meridional Overturning Circulation

Author

Listed:
  • Fukai Liu

    (Ocean University of China)

  • Xun Li

    (Ocean University of China)

  • Yiyong Luo

    (Ocean University of China)

  • Wenju Cai

    (Ocean University of China
    Laoshan Laboratory
    Xiamen University
    Institute of Earth Environment, Chinese Academy of Sciences)

  • Jian Lu

    (Pacific Northwest National Laboratory)

  • Xiao-Tong Zheng

    (Ocean University of China)

  • Sarah M. Kang

    (Max Planck Institute for Meteorology)

  • Hai Wang

    (Ocean University of China)

  • Lei Zhou

    (Shanghai Jiao Tong University
    Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai))

Abstract

Observational evidence and climate model experiments suggest a slowdown of the Atlantic Meridional Overturning Circulation (AMOC) since the mid-1990s. Increased greenhouse gases and the declined anthropogenic aerosols (AAs) over North America and Europe are believed to contribute to the AMOC slowdown. Asian AAs continue to increase but the associated impact has been unclear. Using ensembles of climate simulations, here we show that the radiative cooling resulting from increased Asian AAs drives an AMOC reduction. The increased AAs over Asia generate circumglobal stationary Rossby waves in the northern midlatitudes, which shift the westerly jet stream southward and weaken the subpolar North Atlantic westerlies. Consequently, reduced transport of cold air from North America hinders water mass transformation in the Labrador Sea and thus contributes to the AMOC slowdown. The link between increased Asian AAs and an AMOC slowdown is supported by different models with different configurations. Thus, reducing emissions of Asian AAs will not only lower local air pollution, but also help stabilize the AMOC.

Suggested Citation

  • Fukai Liu & Xun Li & Yiyong Luo & Wenju Cai & Jian Lu & Xiao-Tong Zheng & Sarah M. Kang & Hai Wang & Lei Zhou, 2024. "Increased Asian aerosols drive a slowdown of Atlantic Meridional Overturning Circulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44597-x
    DOI: 10.1038/s41467-023-44597-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44597-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44597-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ben B. B. Booth & Nick J. Dunstone & Paul R. Halloran & Timothy Andrews & Nicolas Bellouin, 2012. "Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability," Nature, Nature, vol. 484(7393), pages 228-232, April.
    2. Harry L. Bryden & Hannah R. Longworth & Stuart A. Cunningham, 2005. "Slowing of the Atlantic meridional overturning circulation at 25° N," Nature, Nature, vol. 438(7068), pages 655-657, December.
    3. Buwen Dong & Rowan T. Sutton & Len Shaffrey & Ben Harvey, 2022. "Recent decadal weakening of the summer Eurasian westerly jet attributable to anthropogenic aerosol emissions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Stefan Rahmstorf & Jason E. Box & Georg Feulner & Michael E. Mann & Alexander Robinson & Scott Rutherford & Erik J. Schaffernicht, 2015. "Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation," Nature Climate Change, Nature, vol. 5(5), pages 475-480, May.
    5. Florian Sévellec & Alexey V. Fedorov & Wei Liu, 2017. "Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation," Nature Climate Change, Nature, vol. 7(8), pages 604-610, August.
    6. Bryam Orihuela-Pinto & Matthew H. England & Andréa S. Taschetto, 2022. "Interbasin and interhemispheric impacts of a collapsed Atlantic Overturning Circulation," Nature Climate Change, Nature, vol. 12(6), pages 558-565, June.
    7. Ben B. B. Booth & Nick J. Dunstone & Paul R. Halloran & Timothy Andrews & Nicolas Bellouin, 2012. "Erratum: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability," Nature, Nature, vol. 485(7399), pages 534-534, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenyu Zhu & Zhengyu Liu & Shaoqing Zhang & Lixin Wu, 2023. "Likely accelerated weakening of Atlantic overturning circulation emerges in optimal salinity fingerprint," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Zhili Wang & Yadong Lei & Huizheng Che & Bo Wu & Xiaoye Zhang, 2024. "Aerosol forcing regulating recent decadal change of summer water vapor budget over the Tibetan Plateau," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Simon L. L. Michel & Didier Swingedouw & Pablo Ortega & Guillaume Gastineau & Juliette Mignot & Gerard McCarthy & Myriam Khodri, 2022. "Early warning signal for a tipping point suggested by a millennial Atlantic Multidecadal Variability reconstruction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Raphaël Rousseau-Rizzi & Kerry Emanuel, 2022. "Natural and anthropogenic contributions to the hurricane drought of the 1970s–1980s," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Kerry Emanuel, 2021. "Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Alessandra Giannini & Alexey Kaplan, 2019. "The role of aerosols and greenhouse gases in Sahel drought and recovery," Climatic Change, Springer, vol. 152(3), pages 449-466, March.
    7. Yoko Yamagami & Masahiro Watanabe & Masato Mori & Jun Ono, 2022. "Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Yanfeng Wang & Ping Huang, 2022. "Potential fire risks in South America under anthropogenic forcing hidden by the Atlantic Multidecadal Oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Qinxue Gu & Melissa Gervais & Gokhan Danabasoglu & Who M. Kim & Frederic Castruccio & Elizabeth Maroon & Shang-Ping Xie, 2024. "Wide range of possible trajectories of North Atlantic climate in a warming world," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Yi Zhong & Ning Tan & Jordan T. Abell & Chijun Sun & Stefanie Kaboth-Bahr & Heather L. Ford & Timothy D. Herbert & Alex Pullen & Keiji Horikawa & Jimin Yu & Torben Struve & Michael E. Weber & Peter D., 2024. "Role of land-ocean interactions in stepwise Northern Hemisphere Glaciation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Yunpeng Luo & Huai Chen & Qiu'an Zhu & Changhui Peng & Gang Yang & Yanzheng Yang & Yao Zhang, 2014. "Relationship between Air Pollutants and Economic Development of the Provincial Capital Cities in China during the Past Decade," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-14, August.
    12. Mohamed M. Ezat & Kirsten Fahl & Tine L. Rasmussen, 2024. "Arctic freshwater outflow suppressed Nordic Seas overturning and oceanic heat transport during the Last Interglacial," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Cheng Zhong & Chen Chen & Yue Liu & Peng Gao & Hui Li, 2019. "A Specific Study on the Impacts of PM2.5 on Urban Heat Islands with Detailed In Situ Data and Satellite Images," Sustainability, MDPI, vol. 11(24), pages 1-10, December.
    14. Hiroshi Sumata & Laura Steur & Sebastian Gerland & Dmitry V. Divine & Olga Pavlova, 2022. "Unprecedented decline of Arctic sea ice outflow in 2018," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Dmitry Orlov & Marija Menshakova & Tomas Thierfelder & Yulia Zaika & Sepp Böhme & Birgitta Evengard & Natalia Pshenichnaya, 2020. "Healthy Ecosystems Are a Prerequisite for Human Health—A Call for Action in the Era of Climate Change with a Focus on Russia," IJERPH, MDPI, vol. 17(22), pages 1-11, November.
    16. Carlo Grillenzoni & Elisa Carraro, 2021. "Sequential tests of causality between environmental time series: With application to the global warming theory," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    17. Jennifer S. Walker & Robert E. Kopp & Christopher M. Little & Benjamin P. Horton, 2022. "Timing of emergence of modern rates of sea-level rise by 1863," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Beatriz Arellano-Nava & Paul R. Halloran & Chris A. Boulton & James Scourse & Paul G. Butler & David J. Reynolds & Timothy M. Lenton, 2022. "Destabilisation of the Subpolar North Atlantic prior to the Little Ice Age," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Lifei Lin & Chundi Hu & Bin Wang & Renguang Wu & Zeming Wu & Song Yang & Wenju Cai & Peiliang Li & Xuejun Xiong & Dake Chen, 2024. "Atlantic origin of the increasing Asian westerly jet interannual variability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Roman Olson & Soon-Il An & Yanan Fan & Jason P Evans, 2019. "Accounting for skill in trend, variability, and autocorrelation facilitates better multi-model projections: Application to the AMOC and temperature time series," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-24, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44597-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.