IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005411.html
   My bibliography  Save this article

Bistable front dynamics in a contractile medium: Travelling wave fronts and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions

Author

Listed:
  • Rashmi Priya
  • Guillermo A Gomez
  • Srikanth Budnar
  • Bipul R Acharya
  • Andras Czirok
  • Alpha S Yap
  • Zoltan Neufeld

Abstract

Mechanical coherence of cell layers is essential for epithelia to function as tissue barriers and to control active tissue dynamics during morphogenesis. RhoA signaling at adherens junctions plays a key role in this process by coupling cadherin-based cell-cell adhesion together with actomyosin contractility. Here we propose and analyze a mathematical model representing core interactions involved in the spatial localization of junctional RhoA signaling. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. This dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behavior of the system when contractility is inhibited are in qualitative agreement with the predictions of the model.Author summary: Mathematical models play a key role in uncovering mechanisms responsible for the formation of patterns in cells and tissues. The well known Turing mechanism based on nonlinear reaction kinetics and differential diffusion explains the formation of static patterns, while positive feedback interactions can generate dynamical structures such as propagating fronts and excitable pulses. Recent studies have demonstrated the importance of mechanical forces that can lead to novel mechanisms of pattern formation such as clustering and oscillations in contractile systems. Here we investigate how contractile forces in mechanically active media can affect bistable front propagation. We found that contraction regulates the front speed or can fully suppress its propagation in space to create a static localized zone. The proposed model provides a new mechanism for cross-talk between mechanical activity of cells and biochemical signaling.

Suggested Citation

  • Rashmi Priya & Guillermo A Gomez & Srikanth Budnar & Bipul R Acharya & Andras Czirok & Alpha S Yap & Zoltan Neufeld, 2017. "Bistable front dynamics in a contractile medium: Travelling wave fronts and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-19, March.
  • Handle: RePEc:plo:pcbi00:1005411
    DOI: 10.1371/journal.pcbi.1005411
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005411
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005411&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005411?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sandrine Etienne-Manneville & Alan Hall, 2002. "Rho GTPases in cell biology," Nature, Nature, vol. 420(6916), pages 629-635, December.
    2. Baker, Ruth E. & Simpson, Matthew J., 2012. "Models of collective cell motion for cell populations with different aspect ratio: Diffusion, proliferation and travelling waves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3729-3750.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jocelyn E. Chau & Kimberly J. Vish & Titus J. Boggon & Amy L. Stiegler, 2022. "SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Limei Wu & Srinivas Chatla & Qiqi Lin & Fabliha Ahmed Chowdhury & Werner Geldenhuys & Wei Du, 2021. "Quinacrine-CASIN combination overcomes chemoresistance in human acute lymphoid leukemia," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Gabriela Casanova-Sepúlveda & Joel A. Sexton & Benjamin E. Turk & Titus J. Boggon, 2023. "Autoregulation of the LIM kinases by their PDZ domain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Cummings, F.W, 2004. "A model of morphogenesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 531-547.
    5. Steffen Nørgaard & Shuer Deng & Wei Cao & Roger Pocock, 2018. "Distinct CED-10/Rac1 domains confer context-specific functions in development," PLOS Genetics, Public Library of Science, vol. 14(9), pages 1-24, September.
    6. Yasuo Takashima & Atsushi Kawaguchi & Junya Fukai & Yasuo Iwadate & Koji Kajiwara & Hiroaki Hondoh & Ryuya Yamanaka, 2021. "Survival prediction based on the gene expression associated with cancer morphology and microenvironment in primary central nervous system lymphoma," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-14, June.
    7. Serena Petracchini & Daniel Hamaoui & Anne Doye & Atef Asnacios & Florian Fage & Elisa Vitiello & Martial Balland & Sebastien Janel & Frank Lafont & Mukund Gupta & Benoit Ladoux & Jerôme Gilleron & Te, 2022. "Optineurin links Hace1-dependent Rac ubiquitylation to integrin-mediated mechanotransduction to control bacterial invasion and cell division," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    8. Juan Manuel Ortiz-Sanchez & Sara E Nichols & Jacqueline Sayyah & Joan Heller Brown & J Andrew McCammon & Barry J Grant, 2012. "Identification of Potential Small Molecule Binding Pockets on Rho Family GTPases," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-13, July.
    9. Guillaume Serwe & David Kachaner & Jessica Gagnon & Cédric Plutoni & Driss Lajoie & Eloïse Duramé & Malha Sahmi & Damien Garrido & Martin Lefrançois & Geneviève Arseneault & Marc K. Saba-El-Leil & Syl, 2023. "CNK2 promotes cancer cell motility by mediating ARF6 activation downstream of AXL signalling," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Yuan Lin & Theresa A. Ramelot & Simge Senyuz & Attila Gursoy & Hyunbum Jang & Ruth Nussinov & Ozlem Keskin & Yi Zheng, 2024. "Tumor-derived RHOA mutants interact with effectors in the GDP-bound state," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Luís António Menezes Carreira & Dobromir Szadkowski & Stefano Lometto & Georg. K. A. Hochberg & Lotte Søgaard-Andersen, 2023. "Molecular basis and design principles of switchable front-rear polarity and directional migration in Myxococcus xanthus," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.