IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53857-3.html
   My bibliography  Save this article

Wafer-scale vertical injection III-nitride deep-ultraviolet light emitters

Author

Listed:
  • Jiaming Wang

    (Peking University)

  • Chen Ji

    (Peking University)

  • Jing Lang

    (Peking University)

  • Fujun Xu

    (Peking University)

  • Lisheng Zhang

    (Peking University
    Beijing SinoGaN Semiconductor Technology Co. Ltd)

  • Xiangning Kang

    (Peking University)

  • Zhixin Qin

    (Peking University)

  • Xuelin Yang

    (Peking University)

  • Ning Tang

    (Peking University
    Peking University
    Collaborative Innovation Center of Quantum Matter)

  • Xinqiang Wang

    (Peking University
    Peking University
    Collaborative Innovation Center of Quantum Matter)

  • Weikun Ge

    (Peking University)

  • Bo Shen

    (Peking University
    Peking University
    Collaborative Innovation Center of Quantum Matter)

Abstract

A ground-breaking roadmap of III-nitride solid-state deep-ultraviolet light emitters is demonstrated to realize the wafer-scale fabrication of devices in vertical injection configuration, from 2 to 4 inches. The epitaxial device structure is stacked on a GaN template instead of conventionally adopted AlN, where the primary concern of the tensile strain for Al-rich AlGaN on GaN is addressed via an innovative decoupling strategy, making the device structure decoupled from the underlying GaN template. Moreover, the strategy provides a protection cushion against the stress mutation during the removal of substrates. As such, large-sized wafers can be obtained without surface cracks, even after the removal of the sapphire substrates by laser lift-off. Wafer-scale fabrication of 280 nm vertical injection deep-ultraviolet light-emitting diodes is eventually demonstrated, where a light output power of 65.2 mW is achieved at a current of 200 mA, largely thanks to the significant improvement of light extraction. This work will definitely speed up the application of III-nitride solid-state deep-ultraviolet light emitters featuring high performance and scalability.

Suggested Citation

  • Jiaming Wang & Chen Ji & Jing Lang & Fujun Xu & Lisheng Zhang & Xiangning Kang & Zhixin Qin & Xuelin Yang & Ning Tang & Xinqiang Wang & Weikun Ge & Bo Shen, 2024. "Wafer-scale vertical injection III-nitride deep-ultraviolet light emitters," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53857-3
    DOI: 10.1038/s41467-024-53857-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53857-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53857-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yasuyuki Kobayashi & Kazuhide Kumakura & Tetsuya Akasaka & Toshiki Makimoto, 2012. "Layered boron nitride as a release layer for mechanical transfer of GaN-based devices," Nature, Nature, vol. 484(7393), pages 223-227, April.
    2. Jiho Shin & Hyunseok Kim & Suresh Sundaram & Junseok Jeong & Bo-In Park & Celesta S. Chang & Joonghoon Choi & Taemin Kim & Mayuran Saravanapavanantham & Kuangye Lu & Sungkyu Kim & Jun Min Suh & Ki Seo, 2023. "Vertical full-colour micro-LEDs via 2D materials-based layer transfer," Nature, Nature, vol. 614(7946), pages 81-87, February.
    3. Yoshitaka Taniyasu & Makoto Kasu & Toshiki Makimoto, 2006. "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres," Nature, Nature, vol. 441(7091), pages 325-328, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nina Sakinah Ahmad Rofaie & Seuk Wai Phoong & Muzalwana Abdul Talib & Ainin Sulaiman, 2023. "Light-emitting diode (LED) research: A bibliometric analysis during 2003–2018," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 173-191, February.
    2. Gaffuri, Pierre & Stolyarova, Elena & Llerena, Daniel & Appert, Estelle & Consonni, Marianne & Robin, Stéphane & Consonni, Vincent, 2021. "Potential substitutes for critical materials in white LEDs: Technological challenges and market opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Jiawei Lv & Jeong Hyun Han & Geonho Han & Seongmin An & Seung Ju Kim & Ryeong Myeong Kim & Jung‐El Ryu & Rena Oh & Hyuckjin Choi & In Han Ha & Yoon Ho Lee & Minje Kim & Gyeong-Su Park & Ho Won Jang & , 2024. "Spatiotemporally modulated full-polarized light emission for multiplexed optical encryption," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Chatterjee, U. & Park, Ji-Hyeon & Um, Dae-Young & Lee, Cheul-Ro, 2017. "III-nitride nanowires for solar light harvesting: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1002-1015.
    5. Sang Hyun Park & Tae Jin Kim & Han Eol Lee & Boo Soo Ma & Myoung Song & Min Seo Kim & Jung Ho Shin & Seung Hyung Lee & Jae Hee Lee & Young Bin Kim & Ki Yun Nam & Hong-Jin Park & Taek-Soo Kim & Keon Ja, 2023. "Universal selective transfer printing via micro-vacuum force," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Lei Han & Simon Ogier & Jun Li & Dan Sharkey & Xiaokuan Yin & Andrew Baker & Alejandro Carreras & Fangyuan Chang & Kai Cheng & Xiaojun Guo, 2023. "Wafer-scale organic-on-III-V monolithic heterogeneous integration for active-matrix micro-LED displays," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Yeh, Naichia & Ding, Ting Jou & Yeh, Pulin, 2015. "Light-emitting diodes׳ light qualities and their corresponding scientific applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 55-61.
    8. Xuexi Yan & Yixiao Jiang & Qianqian Jin & Tingting Yao & Weizhen Wang & Ang Tao & Chunyang Gao & Xiang Li & Chunlin Chen & Hengqiang Ye & Xiu-Liang Ma, 2023. "Interfacial interaction and intense interfacial ultraviolet light emission at an incoherent interface," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Jing Wang & Deshan Liang & Jing Ma & Yuanyuan Fan & Ji Ma & Hasnain Mehdi Jafri & Huayu Yang & Qinghua Zhang & Yue Wang & Changqing Guo & Shouzhe Dong & Di Liu & Xueyun Wang & Jiawang Hong & Nan Zhang, 2023. "Polar Solomon rings in ferroelectric nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53857-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.